Loading…

Temperature-Aware Adaptive Control for Automotive Front-Lighting System

Adaptive front-lighting systems (AFSs) have been widely adopted to automotive industries for providing higher driver's safety. As their light sources, multi-string light-emitting diodes (LED) arrays have been widely adopted because of their simpler driver controls. Recently, micro-structured AF...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.73269-73277
Main Authors: Lee, Jiseong, Kwak, Seung Soo, Kim, Yong Sin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-9de4bfab0a700fa713f373a6c51c9bddc9b570c944726e9ce679c6821943d1033
cites cdi_FETCH-LOGICAL-c338t-9de4bfab0a700fa713f373a6c51c9bddc9b570c944726e9ce679c6821943d1033
container_end_page 73277
container_issue
container_start_page 73269
container_title IEEE access
container_volume 10
creator Lee, Jiseong
Kwak, Seung Soo
Kim, Yong Sin
description Adaptive front-lighting systems (AFSs) have been widely adopted to automotive industries for providing higher driver's safety. As their light sources, multi-string light-emitting diodes (LED) arrays have been widely adopted because of their simpler driver controls. Recently, micro-structured AFSs ( \mu AFSs) with a micro-LED ( \mu LED) array are highly demanded for their controllability of individual LEDs. However, the integration of a \mu LED array and its high-power active-matrix driver are not available on the market. Moreover, a high-power driver causes not only a significant variation in driving current, but also a higher power density requiring over-temperature protection (OTP). In this paper, the average current through each \mu LED is adaptively controlled with pulse width modulation (PWM) in conjunction with an additional PWM control for temperature calibration. Experimental results with a 16 \times 16\,\,\mu LED array placed on top of the proposed driver show that a 5-bit PWM signal controls the average current through each \mu LED cell up to 11 mA. The maximum current error of 4.11% at 100 °C is reduced to 0.23%. When OTP is enabled, the amount of average pixel current reduction depends on the given temperature. The maximum power efficiency of the proposed \mu AFSs driver is as high as 92.3%.
doi_str_mv 10.1109/ACCESS.2022.3189176
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_de3e3577ff6f47e2a292da5279602a47</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9817113</ieee_id><doaj_id>oai_doaj_org_article_de3e3577ff6f47e2a292da5279602a47</doaj_id><sourcerecordid>2691875146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-9de4bfab0a700fa713f373a6c51c9bddc9b570c944726e9ce679c6821943d1033</originalsourceid><addsrcrecordid>eNpNUU1rwkAQXUoLFesv8BLoOXY_kt3sMQS1gtCD9rys2VkbMW662bT47xuNSOcwMzzeezPwEJoSPCMEy7e8KOabzYxiSmeMZJII_oBGlHAZs5Txx3_7M5q07QH3lfVQKkZouYW6Aa9D5yHOf7WHKDe6CdUPRIU7Be-OkXU-yrvganeFF77H43W1_wrVaR9tzm2A-gU9WX1sYXKbY_S5mG-L93j9sVwV-TouGctCLA0kO6t3WAuMrRaEWSaY5mVKSrkzpm-pwKVMEkE5yBK4kCXPKJEJMwQzNkarwdc4fVCNr2rtz8rpSl0B5_dK-1CVR1AGGLBUCGu5TQRQTSU1OqVCckx1Inqv18Gr8e67gzaog-v8qX9fUS5JJlKS8J7FBlbpXdt6sPerBKtLAGoIQF0CULcAetV0UFUAcFfIjAhCGPsDgPmAwg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691875146</pqid></control><display><type>article</type><title>Temperature-Aware Adaptive Control for Automotive Front-Lighting System</title><source>IEEE Xplore Open Access Journals</source><creator>Lee, Jiseong ; Kwak, Seung Soo ; Kim, Yong Sin</creator><creatorcontrib>Lee, Jiseong ; Kwak, Seung Soo ; Kim, Yong Sin</creatorcontrib><description><![CDATA[Adaptive front-lighting systems (AFSs) have been widely adopted to automotive industries for providing higher driver's safety. As their light sources, multi-string light-emitting diodes (LED) arrays have been widely adopted because of their simpler driver controls. Recently, micro-structured AFSs (<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>AFSs) with a micro-LED (<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED) array are highly demanded for their controllability of individual LEDs. However, the integration of a <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED array and its high-power active-matrix driver are not available on the market. Moreover, a high-power driver causes not only a significant variation in driving current, but also a higher power density requiring over-temperature protection (OTP). In this paper, the average current through each <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED is adaptively controlled with pulse width modulation (PWM) in conjunction with an additional PWM control for temperature calibration. Experimental results with a 16 <inline-formula> <tex-math notation="LaTeX">\times 16\,\,\mu </tex-math></inline-formula>LED array placed on top of the proposed driver show that a 5-bit PWM signal controls the average current through each <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED cell up to 11 mA. The maximum current error of 4.11% at 100 °C is reduced to 0.23%. When OTP is enabled, the amount of average pixel current reduction depends on the given temperature. The maximum power efficiency of the proposed <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>AFSs driver is as high as 92.3%.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3189176</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>active-matrix ; Adaptive control ; Adaptive front-lighting systems ; Adaptive systems ; Arrays ; Calibration ; Control systems ; Integrated circuits ; Light emitting diodes ; Light sources ; Lighting ; Maximum power ; over temperature protection ; Power efficiency ; Power management ; Pulse duration modulation ; Pulse width modulation ; smart headlamp ; Temperature sensors ; Vehicles</subject><ispartof>IEEE access, 2022, Vol.10, p.73269-73277</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-9de4bfab0a700fa713f373a6c51c9bddc9b570c944726e9ce679c6821943d1033</citedby><cites>FETCH-LOGICAL-c338t-9de4bfab0a700fa713f373a6c51c9bddc9b570c944726e9ce679c6821943d1033</cites><orcidid>0000-0002-8747-0624 ; 0000-0002-9410-9028 ; 0000-0002-6177-1496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9817113$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lee, Jiseong</creatorcontrib><creatorcontrib>Kwak, Seung Soo</creatorcontrib><creatorcontrib>Kim, Yong Sin</creatorcontrib><title>Temperature-Aware Adaptive Control for Automotive Front-Lighting System</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Adaptive front-lighting systems (AFSs) have been widely adopted to automotive industries for providing higher driver's safety. As their light sources, multi-string light-emitting diodes (LED) arrays have been widely adopted because of their simpler driver controls. Recently, micro-structured AFSs (<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>AFSs) with a micro-LED (<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED) array are highly demanded for their controllability of individual LEDs. However, the integration of a <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED array and its high-power active-matrix driver are not available on the market. Moreover, a high-power driver causes not only a significant variation in driving current, but also a higher power density requiring over-temperature protection (OTP). In this paper, the average current through each <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED is adaptively controlled with pulse width modulation (PWM) in conjunction with an additional PWM control for temperature calibration. Experimental results with a 16 <inline-formula> <tex-math notation="LaTeX">\times 16\,\,\mu </tex-math></inline-formula>LED array placed on top of the proposed driver show that a 5-bit PWM signal controls the average current through each <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED cell up to 11 mA. The maximum current error of 4.11% at 100 °C is reduced to 0.23%. When OTP is enabled, the amount of average pixel current reduction depends on the given temperature. The maximum power efficiency of the proposed <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>AFSs driver is as high as 92.3%.]]></description><subject>active-matrix</subject><subject>Adaptive control</subject><subject>Adaptive front-lighting systems</subject><subject>Adaptive systems</subject><subject>Arrays</subject><subject>Calibration</subject><subject>Control systems</subject><subject>Integrated circuits</subject><subject>Light emitting diodes</subject><subject>Light sources</subject><subject>Lighting</subject><subject>Maximum power</subject><subject>over temperature protection</subject><subject>Power efficiency</subject><subject>Power management</subject><subject>Pulse duration modulation</subject><subject>Pulse width modulation</subject><subject>smart headlamp</subject><subject>Temperature sensors</subject><subject>Vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAQXUoLFesv8BLoOXY_kt3sMQS1gtCD9rys2VkbMW662bT47xuNSOcwMzzeezPwEJoSPCMEy7e8KOabzYxiSmeMZJII_oBGlHAZs5Txx3_7M5q07QH3lfVQKkZouYW6Aa9D5yHOf7WHKDe6CdUPRIU7Be-OkXU-yrvganeFF77H43W1_wrVaR9tzm2A-gU9WX1sYXKbY_S5mG-L93j9sVwV-TouGctCLA0kO6t3WAuMrRaEWSaY5mVKSrkzpm-pwKVMEkE5yBK4kCXPKJEJMwQzNkarwdc4fVCNr2rtz8rpSl0B5_dK-1CVR1AGGLBUCGu5TQRQTSU1OqVCckx1Inqv18Gr8e67gzaog-v8qX9fUS5JJlKS8J7FBlbpXdt6sPerBKtLAGoIQF0CULcAetV0UFUAcFfIjAhCGPsDgPmAwg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lee, Jiseong</creator><creator>Kwak, Seung Soo</creator><creator>Kim, Yong Sin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8747-0624</orcidid><orcidid>https://orcid.org/0000-0002-9410-9028</orcidid><orcidid>https://orcid.org/0000-0002-6177-1496</orcidid></search><sort><creationdate>2022</creationdate><title>Temperature-Aware Adaptive Control for Automotive Front-Lighting System</title><author>Lee, Jiseong ; Kwak, Seung Soo ; Kim, Yong Sin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-9de4bfab0a700fa713f373a6c51c9bddc9b570c944726e9ce679c6821943d1033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>active-matrix</topic><topic>Adaptive control</topic><topic>Adaptive front-lighting systems</topic><topic>Adaptive systems</topic><topic>Arrays</topic><topic>Calibration</topic><topic>Control systems</topic><topic>Integrated circuits</topic><topic>Light emitting diodes</topic><topic>Light sources</topic><topic>Lighting</topic><topic>Maximum power</topic><topic>over temperature protection</topic><topic>Power efficiency</topic><topic>Power management</topic><topic>Pulse duration modulation</topic><topic>Pulse width modulation</topic><topic>smart headlamp</topic><topic>Temperature sensors</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jiseong</creatorcontrib><creatorcontrib>Kwak, Seung Soo</creatorcontrib><creatorcontrib>Kim, Yong Sin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jiseong</au><au>Kwak, Seung Soo</au><au>Kim, Yong Sin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-Aware Adaptive Control for Automotive Front-Lighting System</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>73269</spage><epage>73277</epage><pages>73269-73277</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Adaptive front-lighting systems (AFSs) have been widely adopted to automotive industries for providing higher driver's safety. As their light sources, multi-string light-emitting diodes (LED) arrays have been widely adopted because of their simpler driver controls. Recently, micro-structured AFSs (<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>AFSs) with a micro-LED (<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED) array are highly demanded for their controllability of individual LEDs. However, the integration of a <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED array and its high-power active-matrix driver are not available on the market. Moreover, a high-power driver causes not only a significant variation in driving current, but also a higher power density requiring over-temperature protection (OTP). In this paper, the average current through each <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED is adaptively controlled with pulse width modulation (PWM) in conjunction with an additional PWM control for temperature calibration. Experimental results with a 16 <inline-formula> <tex-math notation="LaTeX">\times 16\,\,\mu </tex-math></inline-formula>LED array placed on top of the proposed driver show that a 5-bit PWM signal controls the average current through each <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED cell up to 11 mA. The maximum current error of 4.11% at 100 °C is reduced to 0.23%. When OTP is enabled, the amount of average pixel current reduction depends on the given temperature. The maximum power efficiency of the proposed <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>AFSs driver is as high as 92.3%.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3189176</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8747-0624</orcidid><orcidid>https://orcid.org/0000-0002-9410-9028</orcidid><orcidid>https://orcid.org/0000-0002-6177-1496</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.73269-73277
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_de3e3577ff6f47e2a292da5279602a47
source IEEE Xplore Open Access Journals
subjects active-matrix
Adaptive control
Adaptive front-lighting systems
Adaptive systems
Arrays
Calibration
Control systems
Integrated circuits
Light emitting diodes
Light sources
Lighting
Maximum power
over temperature protection
Power efficiency
Power management
Pulse duration modulation
Pulse width modulation
smart headlamp
Temperature sensors
Vehicles
title Temperature-Aware Adaptive Control for Automotive Front-Lighting System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-Aware%20Adaptive%20Control%20for%20Automotive%20Front-Lighting%20System&rft.jtitle=IEEE%20access&rft.au=Lee,%20Jiseong&rft.date=2022&rft.volume=10&rft.spage=73269&rft.epage=73277&rft.pages=73269-73277&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3189176&rft_dat=%3Cproquest_doaj_%3E2691875146%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-9de4bfab0a700fa713f373a6c51c9bddc9b570c944726e9ce679c6821943d1033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2691875146&rft_id=info:pmid/&rft_ieee_id=9817113&rfr_iscdi=true