Loading…
Temperature-Aware Adaptive Control for Automotive Front-Lighting System
Adaptive front-lighting systems (AFSs) have been widely adopted to automotive industries for providing higher driver's safety. As their light sources, multi-string light-emitting diodes (LED) arrays have been widely adopted because of their simpler driver controls. Recently, micro-structured AF...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.73269-73277 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-9de4bfab0a700fa713f373a6c51c9bddc9b570c944726e9ce679c6821943d1033 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-9de4bfab0a700fa713f373a6c51c9bddc9b570c944726e9ce679c6821943d1033 |
container_end_page | 73277 |
container_issue | |
container_start_page | 73269 |
container_title | IEEE access |
container_volume | 10 |
creator | Lee, Jiseong Kwak, Seung Soo Kim, Yong Sin |
description | Adaptive front-lighting systems (AFSs) have been widely adopted to automotive industries for providing higher driver's safety. As their light sources, multi-string light-emitting diodes (LED) arrays have been widely adopted because of their simpler driver controls. Recently, micro-structured AFSs ( \mu AFSs) with a micro-LED ( \mu LED) array are highly demanded for their controllability of individual LEDs. However, the integration of a \mu LED array and its high-power active-matrix driver are not available on the market. Moreover, a high-power driver causes not only a significant variation in driving current, but also a higher power density requiring over-temperature protection (OTP). In this paper, the average current through each \mu LED is adaptively controlled with pulse width modulation (PWM) in conjunction with an additional PWM control for temperature calibration. Experimental results with a 16 \times 16\,\,\mu LED array placed on top of the proposed driver show that a 5-bit PWM signal controls the average current through each \mu LED cell up to 11 mA. The maximum current error of 4.11% at 100 °C is reduced to 0.23%. When OTP is enabled, the amount of average pixel current reduction depends on the given temperature. The maximum power efficiency of the proposed \mu AFSs driver is as high as 92.3%. |
doi_str_mv | 10.1109/ACCESS.2022.3189176 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_de3e3577ff6f47e2a292da5279602a47</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9817113</ieee_id><doaj_id>oai_doaj_org_article_de3e3577ff6f47e2a292da5279602a47</doaj_id><sourcerecordid>2691875146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-9de4bfab0a700fa713f373a6c51c9bddc9b570c944726e9ce679c6821943d1033</originalsourceid><addsrcrecordid>eNpNUU1rwkAQXUoLFesv8BLoOXY_kt3sMQS1gtCD9rys2VkbMW662bT47xuNSOcwMzzeezPwEJoSPCMEy7e8KOabzYxiSmeMZJII_oBGlHAZs5Txx3_7M5q07QH3lfVQKkZouYW6Aa9D5yHOf7WHKDe6CdUPRIU7Be-OkXU-yrvganeFF77H43W1_wrVaR9tzm2A-gU9WX1sYXKbY_S5mG-L93j9sVwV-TouGctCLA0kO6t3WAuMrRaEWSaY5mVKSrkzpm-pwKVMEkE5yBK4kCXPKJEJMwQzNkarwdc4fVCNr2rtz8rpSl0B5_dK-1CVR1AGGLBUCGu5TQRQTSU1OqVCckx1Inqv18Gr8e67gzaog-v8qX9fUS5JJlKS8J7FBlbpXdt6sPerBKtLAGoIQF0CULcAetV0UFUAcFfIjAhCGPsDgPmAwg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691875146</pqid></control><display><type>article</type><title>Temperature-Aware Adaptive Control for Automotive Front-Lighting System</title><source>IEEE Xplore Open Access Journals</source><creator>Lee, Jiseong ; Kwak, Seung Soo ; Kim, Yong Sin</creator><creatorcontrib>Lee, Jiseong ; Kwak, Seung Soo ; Kim, Yong Sin</creatorcontrib><description><![CDATA[Adaptive front-lighting systems (AFSs) have been widely adopted to automotive industries for providing higher driver's safety. As their light sources, multi-string light-emitting diodes (LED) arrays have been widely adopted because of their simpler driver controls. Recently, micro-structured AFSs (<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>AFSs) with a micro-LED (<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED) array are highly demanded for their controllability of individual LEDs. However, the integration of a <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED array and its high-power active-matrix driver are not available on the market. Moreover, a high-power driver causes not only a significant variation in driving current, but also a higher power density requiring over-temperature protection (OTP). In this paper, the average current through each <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED is adaptively controlled with pulse width modulation (PWM) in conjunction with an additional PWM control for temperature calibration. Experimental results with a 16 <inline-formula> <tex-math notation="LaTeX">\times 16\,\,\mu </tex-math></inline-formula>LED array placed on top of the proposed driver show that a 5-bit PWM signal controls the average current through each <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED cell up to 11 mA. The maximum current error of 4.11% at 100 °C is reduced to 0.23%. When OTP is enabled, the amount of average pixel current reduction depends on the given temperature. The maximum power efficiency of the proposed <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>AFSs driver is as high as 92.3%.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3189176</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>active-matrix ; Adaptive control ; Adaptive front-lighting systems ; Adaptive systems ; Arrays ; Calibration ; Control systems ; Integrated circuits ; Light emitting diodes ; Light sources ; Lighting ; Maximum power ; over temperature protection ; Power efficiency ; Power management ; Pulse duration modulation ; Pulse width modulation ; smart headlamp ; Temperature sensors ; Vehicles</subject><ispartof>IEEE access, 2022, Vol.10, p.73269-73277</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-9de4bfab0a700fa713f373a6c51c9bddc9b570c944726e9ce679c6821943d1033</citedby><cites>FETCH-LOGICAL-c338t-9de4bfab0a700fa713f373a6c51c9bddc9b570c944726e9ce679c6821943d1033</cites><orcidid>0000-0002-8747-0624 ; 0000-0002-9410-9028 ; 0000-0002-6177-1496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9817113$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lee, Jiseong</creatorcontrib><creatorcontrib>Kwak, Seung Soo</creatorcontrib><creatorcontrib>Kim, Yong Sin</creatorcontrib><title>Temperature-Aware Adaptive Control for Automotive Front-Lighting System</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Adaptive front-lighting systems (AFSs) have been widely adopted to automotive industries for providing higher driver's safety. As their light sources, multi-string light-emitting diodes (LED) arrays have been widely adopted because of their simpler driver controls. Recently, micro-structured AFSs (<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>AFSs) with a micro-LED (<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED) array are highly demanded for their controllability of individual LEDs. However, the integration of a <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED array and its high-power active-matrix driver are not available on the market. Moreover, a high-power driver causes not only a significant variation in driving current, but also a higher power density requiring over-temperature protection (OTP). In this paper, the average current through each <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED is adaptively controlled with pulse width modulation (PWM) in conjunction with an additional PWM control for temperature calibration. Experimental results with a 16 <inline-formula> <tex-math notation="LaTeX">\times 16\,\,\mu </tex-math></inline-formula>LED array placed on top of the proposed driver show that a 5-bit PWM signal controls the average current through each <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED cell up to 11 mA. The maximum current error of 4.11% at 100 °C is reduced to 0.23%. When OTP is enabled, the amount of average pixel current reduction depends on the given temperature. The maximum power efficiency of the proposed <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>AFSs driver is as high as 92.3%.]]></description><subject>active-matrix</subject><subject>Adaptive control</subject><subject>Adaptive front-lighting systems</subject><subject>Adaptive systems</subject><subject>Arrays</subject><subject>Calibration</subject><subject>Control systems</subject><subject>Integrated circuits</subject><subject>Light emitting diodes</subject><subject>Light sources</subject><subject>Lighting</subject><subject>Maximum power</subject><subject>over temperature protection</subject><subject>Power efficiency</subject><subject>Power management</subject><subject>Pulse duration modulation</subject><subject>Pulse width modulation</subject><subject>smart headlamp</subject><subject>Temperature sensors</subject><subject>Vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAQXUoLFesv8BLoOXY_kt3sMQS1gtCD9rys2VkbMW662bT47xuNSOcwMzzeezPwEJoSPCMEy7e8KOabzYxiSmeMZJII_oBGlHAZs5Txx3_7M5q07QH3lfVQKkZouYW6Aa9D5yHOf7WHKDe6CdUPRIU7Be-OkXU-yrvganeFF77H43W1_wrVaR9tzm2A-gU9WX1sYXKbY_S5mG-L93j9sVwV-TouGctCLA0kO6t3WAuMrRaEWSaY5mVKSrkzpm-pwKVMEkE5yBK4kCXPKJEJMwQzNkarwdc4fVCNr2rtz8rpSl0B5_dK-1CVR1AGGLBUCGu5TQRQTSU1OqVCckx1Inqv18Gr8e67gzaog-v8qX9fUS5JJlKS8J7FBlbpXdt6sPerBKtLAGoIQF0CULcAetV0UFUAcFfIjAhCGPsDgPmAwg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lee, Jiseong</creator><creator>Kwak, Seung Soo</creator><creator>Kim, Yong Sin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8747-0624</orcidid><orcidid>https://orcid.org/0000-0002-9410-9028</orcidid><orcidid>https://orcid.org/0000-0002-6177-1496</orcidid></search><sort><creationdate>2022</creationdate><title>Temperature-Aware Adaptive Control for Automotive Front-Lighting System</title><author>Lee, Jiseong ; Kwak, Seung Soo ; Kim, Yong Sin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-9de4bfab0a700fa713f373a6c51c9bddc9b570c944726e9ce679c6821943d1033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>active-matrix</topic><topic>Adaptive control</topic><topic>Adaptive front-lighting systems</topic><topic>Adaptive systems</topic><topic>Arrays</topic><topic>Calibration</topic><topic>Control systems</topic><topic>Integrated circuits</topic><topic>Light emitting diodes</topic><topic>Light sources</topic><topic>Lighting</topic><topic>Maximum power</topic><topic>over temperature protection</topic><topic>Power efficiency</topic><topic>Power management</topic><topic>Pulse duration modulation</topic><topic>Pulse width modulation</topic><topic>smart headlamp</topic><topic>Temperature sensors</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jiseong</creatorcontrib><creatorcontrib>Kwak, Seung Soo</creatorcontrib><creatorcontrib>Kim, Yong Sin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jiseong</au><au>Kwak, Seung Soo</au><au>Kim, Yong Sin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-Aware Adaptive Control for Automotive Front-Lighting System</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>73269</spage><epage>73277</epage><pages>73269-73277</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Adaptive front-lighting systems (AFSs) have been widely adopted to automotive industries for providing higher driver's safety. As their light sources, multi-string light-emitting diodes (LED) arrays have been widely adopted because of their simpler driver controls. Recently, micro-structured AFSs (<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>AFSs) with a micro-LED (<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED) array are highly demanded for their controllability of individual LEDs. However, the integration of a <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED array and its high-power active-matrix driver are not available on the market. Moreover, a high-power driver causes not only a significant variation in driving current, but also a higher power density requiring over-temperature protection (OTP). In this paper, the average current through each <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED is adaptively controlled with pulse width modulation (PWM) in conjunction with an additional PWM control for temperature calibration. Experimental results with a 16 <inline-formula> <tex-math notation="LaTeX">\times 16\,\,\mu </tex-math></inline-formula>LED array placed on top of the proposed driver show that a 5-bit PWM signal controls the average current through each <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>LED cell up to 11 mA. The maximum current error of 4.11% at 100 °C is reduced to 0.23%. When OTP is enabled, the amount of average pixel current reduction depends on the given temperature. The maximum power efficiency of the proposed <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>AFSs driver is as high as 92.3%.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3189176</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8747-0624</orcidid><orcidid>https://orcid.org/0000-0002-9410-9028</orcidid><orcidid>https://orcid.org/0000-0002-6177-1496</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.73269-73277 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_de3e3577ff6f47e2a292da5279602a47 |
source | IEEE Xplore Open Access Journals |
subjects | active-matrix Adaptive control Adaptive front-lighting systems Adaptive systems Arrays Calibration Control systems Integrated circuits Light emitting diodes Light sources Lighting Maximum power over temperature protection Power efficiency Power management Pulse duration modulation Pulse width modulation smart headlamp Temperature sensors Vehicles |
title | Temperature-Aware Adaptive Control for Automotive Front-Lighting System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-Aware%20Adaptive%20Control%20for%20Automotive%20Front-Lighting%20System&rft.jtitle=IEEE%20access&rft.au=Lee,%20Jiseong&rft.date=2022&rft.volume=10&rft.spage=73269&rft.epage=73277&rft.pages=73269-73277&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3189176&rft_dat=%3Cproquest_doaj_%3E2691875146%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-9de4bfab0a700fa713f373a6c51c9bddc9b570c944726e9ce679c6821943d1033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2691875146&rft_id=info:pmid/&rft_ieee_id=9817113&rfr_iscdi=true |