Loading…

Membrane electrode assembly design to prevent CO2 crossover in CO2 reduction reaction electrolysis

To reach a net-zero energy economy by 2050, it is critical to develop negative emission technologies, such as CO 2 reduction electrolyzers, but these devices still suffer from various issues including low utilization of CO 2 because of its cross-over from the cathode to the anode. This comment highl...

Full description

Saved in:
Bibliographic Details
Published in:Communications chemistry 2023-01, Vol.6 (1), p.2-3, Article 2
Main Authors: Chang, Hung-Ming, Zenyuk, Iryna V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c484t-d6bc24207e3769988cdbf9dd4ad7514a1882340c370057d68d70bd6aa13c2e1c3
cites cdi_FETCH-LOGICAL-c484t-d6bc24207e3769988cdbf9dd4ad7514a1882340c370057d68d70bd6aa13c2e1c3
container_end_page 3
container_issue 1
container_start_page 2
container_title Communications chemistry
container_volume 6
creator Chang, Hung-Ming
Zenyuk, Iryna V.
description To reach a net-zero energy economy by 2050, it is critical to develop negative emission technologies, such as CO 2 reduction electrolyzers, but these devices still suffer from various issues including low utilization of CO 2 because of its cross-over from the cathode to the anode. This comment highlights the recent innovative design of membrane electrode assembly, utilizing a bipolar membrane and catholyte layer that blocks CO 2 cross-over and enables high CO 2 single-pass utilization. To reach a net-zero energy economy by 2050, it is critical to develop negative emission technologies, such as CO 2 reduction electrolyzers, but these devices still suffer from various issues including low utilization of CO 2 because of its cross-over from the cathode to the anode. This comment highlights the recent innovative design of membrane electrode assembly, utilizing a bipolar membrane and catholyte layer that blocks CO 2 cross-over and enables high CO 2 single-pass utilization.
doi_str_mv 10.1038/s42004-022-00806-0
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_de97029891f246b1903ae2b0cde0ec74</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_de97029891f246b1903ae2b0cde0ec74</doaj_id><sourcerecordid>2760394231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-d6bc24207e3769988cdbf9dd4ad7514a1882340c370057d68d70bd6aa13c2e1c3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhQdRsGj_gKsB16M3j-axEaT4KChudB0yyW2dMp3UZFrovzd2io-Nqxxuzv3CySmKCwJXBJi6TpwC8AoorQAUiAqOihFlWldMCH38S58W45SWAECBMCnVqKifcVVH22GJLbo-Bo-lTSkP213pMTWLruxDuY64xa4vpy-0dDGkFLYYy6bbDyL6jeub0GVlB3GAtbvUpPPiZG7bhOPDeVa83d-9Th-rp5eH2fT2qXJc8b7yonY0J5HIpNBaKefrufaeWy8nhFuiFGUcHJMAE-mF8hJqL6wlzFEkjp0Vs4Hrg12adWxWNu5MsI3ZD0JcGBv7xrVoPGoJVCtN5pSLmmhgFmkNziOgkzyzbgbWelOv0LucPdr2D_TvTde8m0XYGq0InzCRAZcHQAwfG0y9WYZN7HJ-Q6UApjllJLvo4Nr_acT59wsEzFe3ZujW5G7NvlsDeYkNSymbuwXGH_Q_W5-PVKgY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760394231</pqid></control><display><type>article</type><title>Membrane electrode assembly design to prevent CO2 crossover in CO2 reduction reaction electrolysis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chang, Hung-Ming ; Zenyuk, Iryna V.</creator><creatorcontrib>Chang, Hung-Ming ; Zenyuk, Iryna V.</creatorcontrib><description>To reach a net-zero energy economy by 2050, it is critical to develop negative emission technologies, such as CO 2 reduction electrolyzers, but these devices still suffer from various issues including low utilization of CO 2 because of its cross-over from the cathode to the anode. This comment highlights the recent innovative design of membrane electrode assembly, utilizing a bipolar membrane and catholyte layer that blocks CO 2 cross-over and enables high CO 2 single-pass utilization. To reach a net-zero energy economy by 2050, it is critical to develop negative emission technologies, such as CO 2 reduction electrolyzers, but these devices still suffer from various issues including low utilization of CO 2 because of its cross-over from the cathode to the anode. This comment highlights the recent innovative design of membrane electrode assembly, utilizing a bipolar membrane and catholyte layer that blocks CO 2 cross-over and enables high CO 2 single-pass utilization.</description><identifier>ISSN: 2399-3669</identifier><identifier>EISSN: 2399-3669</identifier><identifier>DOI: 10.1038/s42004-022-00806-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/886 ; 639/4077/4057 ; Assembly ; Carbon dioxide ; Cathodes ; Chemical reduction ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Comment ; Crossovers ; Efficiency ; Electrodes ; Electrolysis ; Electrolytes ; Energy ; Membranes ; Reduction (electrolytic) ; Utilization</subject><ispartof>Communications chemistry, 2023-01, Vol.6 (1), p.2-3, Article 2</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-d6bc24207e3769988cdbf9dd4ad7514a1882340c370057d68d70bd6aa13c2e1c3</citedby><cites>FETCH-LOGICAL-c484t-d6bc24207e3769988cdbf9dd4ad7514a1882340c370057d68d70bd6aa13c2e1c3</cites><orcidid>0000-0002-1612-0475 ; 0000-0002-7715-3350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814536/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2760394231?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25733,27903,27904,36991,44569,53769,53771</link.rule.ids></links><search><creatorcontrib>Chang, Hung-Ming</creatorcontrib><creatorcontrib>Zenyuk, Iryna V.</creatorcontrib><title>Membrane electrode assembly design to prevent CO2 crossover in CO2 reduction reaction electrolysis</title><title>Communications chemistry</title><addtitle>Commun Chem</addtitle><description>To reach a net-zero energy economy by 2050, it is critical to develop negative emission technologies, such as CO 2 reduction electrolyzers, but these devices still suffer from various issues including low utilization of CO 2 because of its cross-over from the cathode to the anode. This comment highlights the recent innovative design of membrane electrode assembly, utilizing a bipolar membrane and catholyte layer that blocks CO 2 cross-over and enables high CO 2 single-pass utilization. To reach a net-zero energy economy by 2050, it is critical to develop negative emission technologies, such as CO 2 reduction electrolyzers, but these devices still suffer from various issues including low utilization of CO 2 because of its cross-over from the cathode to the anode. This comment highlights the recent innovative design of membrane electrode assembly, utilizing a bipolar membrane and catholyte layer that blocks CO 2 cross-over and enables high CO 2 single-pass utilization.</description><subject>639/301/299/886</subject><subject>639/4077/4057</subject><subject>Assembly</subject><subject>Carbon dioxide</subject><subject>Cathodes</subject><subject>Chemical reduction</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Comment</subject><subject>Crossovers</subject><subject>Efficiency</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Membranes</subject><subject>Reduction (electrolytic)</subject><subject>Utilization</subject><issn>2399-3669</issn><issn>2399-3669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtLAzEUhQdRsGj_gKsB16M3j-axEaT4KChudB0yyW2dMp3UZFrovzd2io-Nqxxuzv3CySmKCwJXBJi6TpwC8AoorQAUiAqOihFlWldMCH38S58W45SWAECBMCnVqKifcVVH22GJLbo-Bo-lTSkP213pMTWLruxDuY64xa4vpy-0dDGkFLYYy6bbDyL6jeub0GVlB3GAtbvUpPPiZG7bhOPDeVa83d-9Th-rp5eH2fT2qXJc8b7yonY0J5HIpNBaKefrufaeWy8nhFuiFGUcHJMAE-mF8hJqL6wlzFEkjp0Vs4Hrg12adWxWNu5MsI3ZD0JcGBv7xrVoPGoJVCtN5pSLmmhgFmkNziOgkzyzbgbWelOv0LucPdr2D_TvTde8m0XYGq0InzCRAZcHQAwfG0y9WYZN7HJ-Q6UApjllJLvo4Nr_acT59wsEzFe3ZujW5G7NvlsDeYkNSymbuwXGH_Q_W5-PVKgY</recordid><startdate>20230103</startdate><enddate>20230103</enddate><creator>Chang, Hung-Ming</creator><creator>Zenyuk, Iryna V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1612-0475</orcidid><orcidid>https://orcid.org/0000-0002-7715-3350</orcidid></search><sort><creationdate>20230103</creationdate><title>Membrane electrode assembly design to prevent CO2 crossover in CO2 reduction reaction electrolysis</title><author>Chang, Hung-Ming ; Zenyuk, Iryna V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-d6bc24207e3769988cdbf9dd4ad7514a1882340c370057d68d70bd6aa13c2e1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/299/886</topic><topic>639/4077/4057</topic><topic>Assembly</topic><topic>Carbon dioxide</topic><topic>Cathodes</topic><topic>Chemical reduction</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Comment</topic><topic>Crossovers</topic><topic>Efficiency</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Membranes</topic><topic>Reduction (electrolytic)</topic><topic>Utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Hung-Ming</creatorcontrib><creatorcontrib>Zenyuk, Iryna V.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Communications chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Hung-Ming</au><au>Zenyuk, Iryna V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membrane electrode assembly design to prevent CO2 crossover in CO2 reduction reaction electrolysis</atitle><jtitle>Communications chemistry</jtitle><stitle>Commun Chem</stitle><date>2023-01-03</date><risdate>2023</risdate><volume>6</volume><issue>1</issue><spage>2</spage><epage>3</epage><pages>2-3</pages><artnum>2</artnum><issn>2399-3669</issn><eissn>2399-3669</eissn><abstract>To reach a net-zero energy economy by 2050, it is critical to develop negative emission technologies, such as CO 2 reduction electrolyzers, but these devices still suffer from various issues including low utilization of CO 2 because of its cross-over from the cathode to the anode. This comment highlights the recent innovative design of membrane electrode assembly, utilizing a bipolar membrane and catholyte layer that blocks CO 2 cross-over and enables high CO 2 single-pass utilization. To reach a net-zero energy economy by 2050, it is critical to develop negative emission technologies, such as CO 2 reduction electrolyzers, but these devices still suffer from various issues including low utilization of CO 2 because of its cross-over from the cathode to the anode. This comment highlights the recent innovative design of membrane electrode assembly, utilizing a bipolar membrane and catholyte layer that blocks CO 2 cross-over and enables high CO 2 single-pass utilization.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42004-022-00806-0</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-1612-0475</orcidid><orcidid>https://orcid.org/0000-0002-7715-3350</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3669
ispartof Communications chemistry, 2023-01, Vol.6 (1), p.2-3, Article 2
issn 2399-3669
2399-3669
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_de97029891f246b1903ae2b0cde0ec74
source Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/299/886
639/4077/4057
Assembly
Carbon dioxide
Cathodes
Chemical reduction
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Comment
Crossovers
Efficiency
Electrodes
Electrolysis
Electrolytes
Energy
Membranes
Reduction (electrolytic)
Utilization
title Membrane electrode assembly design to prevent CO2 crossover in CO2 reduction reaction electrolysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membrane%20electrode%20assembly%20design%20to%20prevent%20CO2%20crossover%20in%20CO2%20reduction%20reaction%20electrolysis&rft.jtitle=Communications%20chemistry&rft.au=Chang,%20Hung-Ming&rft.date=2023-01-03&rft.volume=6&rft.issue=1&rft.spage=2&rft.epage=3&rft.pages=2-3&rft.artnum=2&rft.issn=2399-3669&rft.eissn=2399-3669&rft_id=info:doi/10.1038/s42004-022-00806-0&rft_dat=%3Cproquest_doaj_%3E2760394231%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-d6bc24207e3769988cdbf9dd4ad7514a1882340c370057d68d70bd6aa13c2e1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760394231&rft_id=info:pmid/&rfr_iscdi=true