Loading…
Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons
Coupling vibrational transitions to resonant optical modes creates vibrational polaritons shifted from the uncoupled molecular resonances and provides a convenient way to modify the energetics of molecular vibrations. This approach is a viable method to explore controlling chemical reactivity. In th...
Saved in:
Published in: | Nature communications 2016-11, Vol.7 (1), p.13504-13504, Article 13504 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c578t-51e1121ae627dcc5fdb94fef4a9a90c529ed47e49b9001cb2a00a7a5681123943 |
---|---|
cites | cdi_FETCH-LOGICAL-c578t-51e1121ae627dcc5fdb94fef4a9a90c529ed47e49b9001cb2a00a7a5681123943 |
container_end_page | 13504 |
container_issue | 1 |
container_start_page | 13504 |
container_title | Nature communications |
container_volume | 7 |
creator | Dunkelberger, A. D. Spann, B. T. Fears, K. P. Simpkins, B. S. Owrutsky, J. C. |
description | Coupling vibrational transitions to resonant optical modes creates vibrational polaritons shifted from the uncoupled molecular resonances and provides a convenient way to modify the energetics of molecular vibrations. This approach is a viable method to explore controlling chemical reactivity. In this work, we report pump–probe infrared spectroscopy of the cavity-coupled C–O stretching band of W(CO)
6
and the direct measurement of the lifetime of a vibration-cavity polariton. The upper polariton relaxes 10 times more quickly than the uncoupled vibrational mode. Tuning the polariton energy changes the polariton transient spectra and relaxation times. We also observe quantum beats, so-called vacuum Rabi oscillations, between the upper and lower vibration-cavity polaritons. In addition to establishing that coupling to an optical cavity modifies the energy-transfer dynamics of the coupled molecules, this work points out the possibility of systematic and predictive modification of the excited-state kinetics of vibration-cavity polariton systems.
Vibration-cavity polaritons are mixed states produced by strong coupling between a vibrational mode and an optical cavity. Here, the authors show that these polaritons can coherently exchange energy and exhibit drastically altered transient spectra and dynamics compared to uncoupled vibrations. |
doi_str_mv | 10.1038/ncomms13504 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ded2189e558547ebbb6d70804ede8c4f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ded2189e558547ebbb6d70804ede8c4f</doaj_id><sourcerecordid>1842601305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-51e1121ae627dcc5fdb94fef4a9a90c529ed47e49b9001cb2a00a7a5681123943</originalsourceid><addsrcrecordid>eNptkkFvFCEUgInRtE3tqXcziRcTOxUYmBkuJk2jtUmNFz3jG3izy2YGVpjZdP-9dLc220YuEN73Png8CDln9JLRqv3kTRjHxCpJxStywqlgJWt49fpgfUzOUlrRPCrFWiGOyDFv2kZQRk_I7-_But6hLSIOcA-TC76wWw-jM6kAbwsTlhjRTwV6jIttgfdmCX6BhfM5Nq-HnLtxXdyllgY2btoW6zBAdFPw6S1508OQ8OxxPiW_vn75ef2tvPtxc3t9dVca2bRTKRkyxhlgzRtrjOxtp0SPvQAFihrJFVrRoFCdopSZjgOl0ICs25xWKVGdktu91wZY6XV0I8StDuD0biPEhYY4OTOgtmg5axVK2crs7Lqutg1tqUCLrRF9dn3eu9ZzN6I1ufoIwzPp84h3S70IGy1zCYLVWfDhURDDnxnTpEeXDA4DeAxz0rkNvKasojKj71-gqzBHn59qR3FW8-qhuo97ysSQUsT-6TKM6oePoA8-QqbfHd7_if3X9gxc7IGUQ7mX8eDQ__j-AsfIwAY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1842216234</pqid></control><display><type>article</type><title>Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Dunkelberger, A. D. ; Spann, B. T. ; Fears, K. P. ; Simpkins, B. S. ; Owrutsky, J. C.</creator><creatorcontrib>Dunkelberger, A. D. ; Spann, B. T. ; Fears, K. P. ; Simpkins, B. S. ; Owrutsky, J. C.</creatorcontrib><description>Coupling vibrational transitions to resonant optical modes creates vibrational polaritons shifted from the uncoupled molecular resonances and provides a convenient way to modify the energetics of molecular vibrations. This approach is a viable method to explore controlling chemical reactivity. In this work, we report pump–probe infrared spectroscopy of the cavity-coupled C–O stretching band of W(CO)
6
and the direct measurement of the lifetime of a vibration-cavity polariton. The upper polariton relaxes 10 times more quickly than the uncoupled vibrational mode. Tuning the polariton energy changes the polariton transient spectra and relaxation times. We also observe quantum beats, so-called vacuum Rabi oscillations, between the upper and lower vibration-cavity polaritons. In addition to establishing that coupling to an optical cavity modifies the energy-transfer dynamics of the coupled molecules, this work points out the possibility of systematic and predictive modification of the excited-state kinetics of vibration-cavity polariton systems.
Vibration-cavity polaritons are mixed states produced by strong coupling between a vibrational mode and an optical cavity. Here, the authors show that these polaritons can coherently exchange energy and exhibit drastically altered transient spectra and dynamics compared to uncoupled vibrations.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms13504</identifier><identifier>PMID: 27874010</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/638/440/94 ; 639/638/440/948 ; Chemistry ; Energy ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary) ; Vibration</subject><ispartof>Nature communications, 2016-11, Vol.7 (1), p.13504-13504, Article 13504</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Nov 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-51e1121ae627dcc5fdb94fef4a9a90c529ed47e49b9001cb2a00a7a5681123943</citedby><cites>FETCH-LOGICAL-c578t-51e1121ae627dcc5fdb94fef4a9a90c529ed47e49b9001cb2a00a7a5681123943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1842216234/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1842216234?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27874010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunkelberger, A. D.</creatorcontrib><creatorcontrib>Spann, B. T.</creatorcontrib><creatorcontrib>Fears, K. P.</creatorcontrib><creatorcontrib>Simpkins, B. S.</creatorcontrib><creatorcontrib>Owrutsky, J. C.</creatorcontrib><title>Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Coupling vibrational transitions to resonant optical modes creates vibrational polaritons shifted from the uncoupled molecular resonances and provides a convenient way to modify the energetics of molecular vibrations. This approach is a viable method to explore controlling chemical reactivity. In this work, we report pump–probe infrared spectroscopy of the cavity-coupled C–O stretching band of W(CO)
6
and the direct measurement of the lifetime of a vibration-cavity polariton. The upper polariton relaxes 10 times more quickly than the uncoupled vibrational mode. Tuning the polariton energy changes the polariton transient spectra and relaxation times. We also observe quantum beats, so-called vacuum Rabi oscillations, between the upper and lower vibration-cavity polaritons. In addition to establishing that coupling to an optical cavity modifies the energy-transfer dynamics of the coupled molecules, this work points out the possibility of systematic and predictive modification of the excited-state kinetics of vibration-cavity polariton systems.
Vibration-cavity polaritons are mixed states produced by strong coupling between a vibrational mode and an optical cavity. Here, the authors show that these polaritons can coherently exchange energy and exhibit drastically altered transient spectra and dynamics compared to uncoupled vibrations.</description><subject>140/125</subject><subject>639/638/440/94</subject><subject>639/638/440/948</subject><subject>Chemistry</subject><subject>Energy</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Vibration</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkkFvFCEUgInRtE3tqXcziRcTOxUYmBkuJk2jtUmNFz3jG3izy2YGVpjZdP-9dLc220YuEN73Png8CDln9JLRqv3kTRjHxCpJxStywqlgJWt49fpgfUzOUlrRPCrFWiGOyDFv2kZQRk_I7-_But6hLSIOcA-TC76wWw-jM6kAbwsTlhjRTwV6jIttgfdmCX6BhfM5Nq-HnLtxXdyllgY2btoW6zBAdFPw6S1508OQ8OxxPiW_vn75ef2tvPtxc3t9dVca2bRTKRkyxhlgzRtrjOxtp0SPvQAFihrJFVrRoFCdopSZjgOl0ICs25xWKVGdktu91wZY6XV0I8StDuD0biPEhYY4OTOgtmg5axVK2crs7Lqutg1tqUCLrRF9dn3eu9ZzN6I1ufoIwzPp84h3S70IGy1zCYLVWfDhURDDnxnTpEeXDA4DeAxz0rkNvKasojKj71-gqzBHn59qR3FW8-qhuo97ysSQUsT-6TKM6oePoA8-QqbfHd7_if3X9gxc7IGUQ7mX8eDQ__j-AsfIwAY</recordid><startdate>20161122</startdate><enddate>20161122</enddate><creator>Dunkelberger, A. D.</creator><creator>Spann, B. T.</creator><creator>Fears, K. P.</creator><creator>Simpkins, B. S.</creator><creator>Owrutsky, J. C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20161122</creationdate><title>Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons</title><author>Dunkelberger, A. D. ; Spann, B. T. ; Fears, K. P. ; Simpkins, B. S. ; Owrutsky, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-51e1121ae627dcc5fdb94fef4a9a90c529ed47e49b9001cb2a00a7a5681123943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>140/125</topic><topic>639/638/440/94</topic><topic>639/638/440/948</topic><topic>Chemistry</topic><topic>Energy</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunkelberger, A. D.</creatorcontrib><creatorcontrib>Spann, B. T.</creatorcontrib><creatorcontrib>Fears, K. P.</creatorcontrib><creatorcontrib>Simpkins, B. S.</creatorcontrib><creatorcontrib>Owrutsky, J. C.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunkelberger, A. D.</au><au>Spann, B. T.</au><au>Fears, K. P.</au><au>Simpkins, B. S.</au><au>Owrutsky, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-11-22</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>13504</spage><epage>13504</epage><pages>13504-13504</pages><artnum>13504</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Coupling vibrational transitions to resonant optical modes creates vibrational polaritons shifted from the uncoupled molecular resonances and provides a convenient way to modify the energetics of molecular vibrations. This approach is a viable method to explore controlling chemical reactivity. In this work, we report pump–probe infrared spectroscopy of the cavity-coupled C–O stretching band of W(CO)
6
and the direct measurement of the lifetime of a vibration-cavity polariton. The upper polariton relaxes 10 times more quickly than the uncoupled vibrational mode. Tuning the polariton energy changes the polariton transient spectra and relaxation times. We also observe quantum beats, so-called vacuum Rabi oscillations, between the upper and lower vibration-cavity polaritons. In addition to establishing that coupling to an optical cavity modifies the energy-transfer dynamics of the coupled molecules, this work points out the possibility of systematic and predictive modification of the excited-state kinetics of vibration-cavity polariton systems.
Vibration-cavity polaritons are mixed states produced by strong coupling between a vibrational mode and an optical cavity. Here, the authors show that these polaritons can coherently exchange energy and exhibit drastically altered transient spectra and dynamics compared to uncoupled vibrations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27874010</pmid><doi>10.1038/ncomms13504</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2016-11, Vol.7 (1), p.13504-13504, Article 13504 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ded2189e558547ebbb6d70804ede8c4f |
source | Publicly Available Content Database; Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 140/125 639/638/440/94 639/638/440/948 Chemistry Energy Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) Vibration |
title | Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20relaxation%20dynamics%20and%20coherent%20energy%20exchange%20in%20coupled%20vibration-cavity%20polaritons&rft.jtitle=Nature%20communications&rft.au=Dunkelberger,%20A.%20D.&rft.date=2016-11-22&rft.volume=7&rft.issue=1&rft.spage=13504&rft.epage=13504&rft.pages=13504-13504&rft.artnum=13504&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms13504&rft_dat=%3Cproquest_doaj_%3E1842601305%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-51e1121ae627dcc5fdb94fef4a9a90c529ed47e49b9001cb2a00a7a5681123943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1842216234&rft_id=info:pmid/27874010&rfr_iscdi=true |