Loading…

Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons

Coupling vibrational transitions to resonant optical modes creates vibrational polaritons shifted from the uncoupled molecular resonances and provides a convenient way to modify the energetics of molecular vibrations. This approach is a viable method to explore controlling chemical reactivity. In th...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2016-11, Vol.7 (1), p.13504-13504, Article 13504
Main Authors: Dunkelberger, A. D., Spann, B. T., Fears, K. P., Simpkins, B. S., Owrutsky, J. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c578t-51e1121ae627dcc5fdb94fef4a9a90c529ed47e49b9001cb2a00a7a5681123943
cites cdi_FETCH-LOGICAL-c578t-51e1121ae627dcc5fdb94fef4a9a90c529ed47e49b9001cb2a00a7a5681123943
container_end_page 13504
container_issue 1
container_start_page 13504
container_title Nature communications
container_volume 7
creator Dunkelberger, A. D.
Spann, B. T.
Fears, K. P.
Simpkins, B. S.
Owrutsky, J. C.
description Coupling vibrational transitions to resonant optical modes creates vibrational polaritons shifted from the uncoupled molecular resonances and provides a convenient way to modify the energetics of molecular vibrations. This approach is a viable method to explore controlling chemical reactivity. In this work, we report pump–probe infrared spectroscopy of the cavity-coupled C–O stretching band of W(CO) 6 and the direct measurement of the lifetime of a vibration-cavity polariton. The upper polariton relaxes 10 times more quickly than the uncoupled vibrational mode. Tuning the polariton energy changes the polariton transient spectra and relaxation times. We also observe quantum beats, so-called vacuum Rabi oscillations, between the upper and lower vibration-cavity polaritons. In addition to establishing that coupling to an optical cavity modifies the energy-transfer dynamics of the coupled molecules, this work points out the possibility of systematic and predictive modification of the excited-state kinetics of vibration-cavity polariton systems. Vibration-cavity polaritons are mixed states produced by strong coupling between a vibrational mode and an optical cavity. Here, the authors show that these polaritons can coherently exchange energy and exhibit drastically altered transient spectra and dynamics compared to uncoupled vibrations.
doi_str_mv 10.1038/ncomms13504
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ded2189e558547ebbb6d70804ede8c4f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ded2189e558547ebbb6d70804ede8c4f</doaj_id><sourcerecordid>1842601305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-51e1121ae627dcc5fdb94fef4a9a90c529ed47e49b9001cb2a00a7a5681123943</originalsourceid><addsrcrecordid>eNptkkFvFCEUgInRtE3tqXcziRcTOxUYmBkuJk2jtUmNFz3jG3izy2YGVpjZdP-9dLc220YuEN73Png8CDln9JLRqv3kTRjHxCpJxStywqlgJWt49fpgfUzOUlrRPCrFWiGOyDFv2kZQRk_I7-_But6hLSIOcA-TC76wWw-jM6kAbwsTlhjRTwV6jIttgfdmCX6BhfM5Nq-HnLtxXdyllgY2btoW6zBAdFPw6S1508OQ8OxxPiW_vn75ef2tvPtxc3t9dVca2bRTKRkyxhlgzRtrjOxtp0SPvQAFihrJFVrRoFCdopSZjgOl0ICs25xWKVGdktu91wZY6XV0I8StDuD0biPEhYY4OTOgtmg5axVK2crs7Lqutg1tqUCLrRF9dn3eu9ZzN6I1ufoIwzPp84h3S70IGy1zCYLVWfDhURDDnxnTpEeXDA4DeAxz0rkNvKasojKj71-gqzBHn59qR3FW8-qhuo97ysSQUsT-6TKM6oePoA8-QqbfHd7_if3X9gxc7IGUQ7mX8eDQ__j-AsfIwAY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1842216234</pqid></control><display><type>article</type><title>Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Dunkelberger, A. D. ; Spann, B. T. ; Fears, K. P. ; Simpkins, B. S. ; Owrutsky, J. C.</creator><creatorcontrib>Dunkelberger, A. D. ; Spann, B. T. ; Fears, K. P. ; Simpkins, B. S. ; Owrutsky, J. C.</creatorcontrib><description>Coupling vibrational transitions to resonant optical modes creates vibrational polaritons shifted from the uncoupled molecular resonances and provides a convenient way to modify the energetics of molecular vibrations. This approach is a viable method to explore controlling chemical reactivity. In this work, we report pump–probe infrared spectroscopy of the cavity-coupled C–O stretching band of W(CO) 6 and the direct measurement of the lifetime of a vibration-cavity polariton. The upper polariton relaxes 10 times more quickly than the uncoupled vibrational mode. Tuning the polariton energy changes the polariton transient spectra and relaxation times. We also observe quantum beats, so-called vacuum Rabi oscillations, between the upper and lower vibration-cavity polaritons. In addition to establishing that coupling to an optical cavity modifies the energy-transfer dynamics of the coupled molecules, this work points out the possibility of systematic and predictive modification of the excited-state kinetics of vibration-cavity polariton systems. Vibration-cavity polaritons are mixed states produced by strong coupling between a vibrational mode and an optical cavity. Here, the authors show that these polaritons can coherently exchange energy and exhibit drastically altered transient spectra and dynamics compared to uncoupled vibrations.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms13504</identifier><identifier>PMID: 27874010</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/638/440/94 ; 639/638/440/948 ; Chemistry ; Energy ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary) ; Vibration</subject><ispartof>Nature communications, 2016-11, Vol.7 (1), p.13504-13504, Article 13504</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Nov 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-51e1121ae627dcc5fdb94fef4a9a90c529ed47e49b9001cb2a00a7a5681123943</citedby><cites>FETCH-LOGICAL-c578t-51e1121ae627dcc5fdb94fef4a9a90c529ed47e49b9001cb2a00a7a5681123943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1842216234/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1842216234?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27874010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunkelberger, A. D.</creatorcontrib><creatorcontrib>Spann, B. T.</creatorcontrib><creatorcontrib>Fears, K. P.</creatorcontrib><creatorcontrib>Simpkins, B. S.</creatorcontrib><creatorcontrib>Owrutsky, J. C.</creatorcontrib><title>Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Coupling vibrational transitions to resonant optical modes creates vibrational polaritons shifted from the uncoupled molecular resonances and provides a convenient way to modify the energetics of molecular vibrations. This approach is a viable method to explore controlling chemical reactivity. In this work, we report pump–probe infrared spectroscopy of the cavity-coupled C–O stretching band of W(CO) 6 and the direct measurement of the lifetime of a vibration-cavity polariton. The upper polariton relaxes 10 times more quickly than the uncoupled vibrational mode. Tuning the polariton energy changes the polariton transient spectra and relaxation times. We also observe quantum beats, so-called vacuum Rabi oscillations, between the upper and lower vibration-cavity polaritons. In addition to establishing that coupling to an optical cavity modifies the energy-transfer dynamics of the coupled molecules, this work points out the possibility of systematic and predictive modification of the excited-state kinetics of vibration-cavity polariton systems. Vibration-cavity polaritons are mixed states produced by strong coupling between a vibrational mode and an optical cavity. Here, the authors show that these polaritons can coherently exchange energy and exhibit drastically altered transient spectra and dynamics compared to uncoupled vibrations.</description><subject>140/125</subject><subject>639/638/440/94</subject><subject>639/638/440/948</subject><subject>Chemistry</subject><subject>Energy</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Vibration</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkkFvFCEUgInRtE3tqXcziRcTOxUYmBkuJk2jtUmNFz3jG3izy2YGVpjZdP-9dLc220YuEN73Png8CDln9JLRqv3kTRjHxCpJxStywqlgJWt49fpgfUzOUlrRPCrFWiGOyDFv2kZQRk_I7-_But6hLSIOcA-TC76wWw-jM6kAbwsTlhjRTwV6jIttgfdmCX6BhfM5Nq-HnLtxXdyllgY2btoW6zBAdFPw6S1508OQ8OxxPiW_vn75ef2tvPtxc3t9dVca2bRTKRkyxhlgzRtrjOxtp0SPvQAFihrJFVrRoFCdopSZjgOl0ICs25xWKVGdktu91wZY6XV0I8StDuD0biPEhYY4OTOgtmg5axVK2crs7Lqutg1tqUCLrRF9dn3eu9ZzN6I1ufoIwzPp84h3S70IGy1zCYLVWfDhURDDnxnTpEeXDA4DeAxz0rkNvKasojKj71-gqzBHn59qR3FW8-qhuo97ysSQUsT-6TKM6oePoA8-QqbfHd7_if3X9gxc7IGUQ7mX8eDQ__j-AsfIwAY</recordid><startdate>20161122</startdate><enddate>20161122</enddate><creator>Dunkelberger, A. D.</creator><creator>Spann, B. T.</creator><creator>Fears, K. P.</creator><creator>Simpkins, B. S.</creator><creator>Owrutsky, J. C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20161122</creationdate><title>Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons</title><author>Dunkelberger, A. D. ; Spann, B. T. ; Fears, K. P. ; Simpkins, B. S. ; Owrutsky, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-51e1121ae627dcc5fdb94fef4a9a90c529ed47e49b9001cb2a00a7a5681123943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>140/125</topic><topic>639/638/440/94</topic><topic>639/638/440/948</topic><topic>Chemistry</topic><topic>Energy</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunkelberger, A. D.</creatorcontrib><creatorcontrib>Spann, B. T.</creatorcontrib><creatorcontrib>Fears, K. P.</creatorcontrib><creatorcontrib>Simpkins, B. S.</creatorcontrib><creatorcontrib>Owrutsky, J. C.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunkelberger, A. D.</au><au>Spann, B. T.</au><au>Fears, K. P.</au><au>Simpkins, B. S.</au><au>Owrutsky, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-11-22</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>13504</spage><epage>13504</epage><pages>13504-13504</pages><artnum>13504</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Coupling vibrational transitions to resonant optical modes creates vibrational polaritons shifted from the uncoupled molecular resonances and provides a convenient way to modify the energetics of molecular vibrations. This approach is a viable method to explore controlling chemical reactivity. In this work, we report pump–probe infrared spectroscopy of the cavity-coupled C–O stretching band of W(CO) 6 and the direct measurement of the lifetime of a vibration-cavity polariton. The upper polariton relaxes 10 times more quickly than the uncoupled vibrational mode. Tuning the polariton energy changes the polariton transient spectra and relaxation times. We also observe quantum beats, so-called vacuum Rabi oscillations, between the upper and lower vibration-cavity polaritons. In addition to establishing that coupling to an optical cavity modifies the energy-transfer dynamics of the coupled molecules, this work points out the possibility of systematic and predictive modification of the excited-state kinetics of vibration-cavity polariton systems. Vibration-cavity polaritons are mixed states produced by strong coupling between a vibrational mode and an optical cavity. Here, the authors show that these polaritons can coherently exchange energy and exhibit drastically altered transient spectra and dynamics compared to uncoupled vibrations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27874010</pmid><doi>10.1038/ncomms13504</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2016-11, Vol.7 (1), p.13504-13504, Article 13504
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ded2189e558547ebbb6d70804ede8c4f
source Publicly Available Content Database; Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 140/125
639/638/440/94
639/638/440/948
Chemistry
Energy
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
Vibration
title Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20relaxation%20dynamics%20and%20coherent%20energy%20exchange%20in%20coupled%20vibration-cavity%20polaritons&rft.jtitle=Nature%20communications&rft.au=Dunkelberger,%20A.%20D.&rft.date=2016-11-22&rft.volume=7&rft.issue=1&rft.spage=13504&rft.epage=13504&rft.pages=13504-13504&rft.artnum=13504&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms13504&rft_dat=%3Cproquest_doaj_%3E1842601305%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-51e1121ae627dcc5fdb94fef4a9a90c529ed47e49b9001cb2a00a7a5681123943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1842216234&rft_id=info:pmid/27874010&rfr_iscdi=true