Loading…
Architecture for Trajectory-Based Fishing Ship Classification with AIS Data
This paper proposes a data preparation process for managing real-world kinematic data and detecting fishing vessels. The solution is a binary classification that classifies ship trajectories into either fishing or non-fishing ships. The data used are characterized by the typical problems found in cl...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2020-07, Vol.20 (13), p.3782 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c516t-9bb2213ad21aa45d5a358430349e61ebff1b64a3c79a68e92c10d80c94c3e8233 |
---|---|
cites | cdi_FETCH-LOGICAL-c516t-9bb2213ad21aa45d5a358430349e61ebff1b64a3c79a68e92c10d80c94c3e8233 |
container_end_page | |
container_issue | 13 |
container_start_page | 3782 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 20 |
creator | Sánchez Pedroche, David Amigo, Daniel García, Jesús Molina, José Manuel |
description | This paper proposes a data preparation process for managing real-world kinematic data and detecting fishing vessels. The solution is a binary classification that classifies ship trajectories into either fishing or non-fishing ships. The data used are characterized by the typical problems found in classic data mining applications using real-world data, such as noise and inconsistencies. The two classes are also clearly unbalanced in the data, a problem which is addressed using algorithms that resample the instances. For classification, a series of features are extracted from spatiotemporal data that represent the trajectories of the ships, available from sequences of Automatic Identification System (AIS) reports. These features are proposed for the modelling of ship behavior but, because they do not contain context-related information, the classification can be applied in other scenarios. Experimentation shows that the proposed data preparation process is useful for the presented classification problem. In addition, positive results are obtained using minimal information. |
doi_str_mv | 10.3390/s20133782 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ded5632b5e8842ffb4cddf4159999c9a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ded5632b5e8842ffb4cddf4159999c9a</doaj_id><sourcerecordid>2422009939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-9bb2213ad21aa45d5a358430349e61ebff1b64a3c79a68e92c10d80c94c3e8233</originalsourceid><addsrcrecordid>eNpdkUFvFCEUx4nR2Fo9-A0m8aKHUeAxM3Ax2a6tbmziofVM3gCzw2Z2WIHR9NsXu01j5QI8fvmF9_6EvGX0I4CinxKnDKCT_Bk5ZYKLWnJOn_9zPiGvUtpRygFAviQnwFtBm5adku-raEafnclLdNUQYnUTcVeuId7W55icrS59Gv28ra5Hf6jWE6bkB28w-zBXf3weq9XmuvqCGV-TFwNOyb152M_Iz8uLm_W3-urH1816dVWbhrW5Vn3POQO0nCGKxjYIjRRAQSjXMtcPA-tbgWA6ha10ihtGraRGCQNOlhbOyObotQF3-hD9HuOtDuj1fSHErcaYvZmcts42LfC-cVIKPgy9MNYOgjWqLKOwuD4fXYel3ztr3JwjTk-kT19mP-pt-K076AQwVgTvHwQx_Fpcynrvk3HThLMLS9JclPlTpUAV9N1_6C4scS6juqegpNh2hfpwpEwMKUU3PH6GUf03bv0YN9wBRZGZ-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422320167</pqid></control><display><type>article</type><title>Architecture for Trajectory-Based Fishing Ship Classification with AIS Data</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Sánchez Pedroche, David ; Amigo, Daniel ; García, Jesús ; Molina, José Manuel</creator><creatorcontrib>Sánchez Pedroche, David ; Amigo, Daniel ; García, Jesús ; Molina, José Manuel</creatorcontrib><description>This paper proposes a data preparation process for managing real-world kinematic data and detecting fishing vessels. The solution is a binary classification that classifies ship trajectories into either fishing or non-fishing ships. The data used are characterized by the typical problems found in classic data mining applications using real-world data, such as noise and inconsistencies. The two classes are also clearly unbalanced in the data, a problem which is addressed using algorithms that resample the instances. For classification, a series of features are extracted from spatiotemporal data that represent the trajectories of the ships, available from sequences of Automatic Identification System (AIS) reports. These features are proposed for the modelling of ship behavior but, because they do not contain context-related information, the classification can be applied in other scenarios. Experimentation shows that the proposed data preparation process is useful for the presented classification problem. In addition, positive results are obtained using minimal information.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20133782</identifier><identifier>PMID: 32640561</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>AIS data ; Algorithms ; class imbalance ; Classification ; Collaboration ; data fusion ; Experimentation ; Fishing ; Identification systems ; Kinematics ; machine learning ; Sensors ; Sequences ; spatiotemporal data mining ; trajectory classification</subject><ispartof>Sensors (Basel, Switzerland), 2020-07, Vol.20 (13), p.3782</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-9bb2213ad21aa45d5a358430349e61ebff1b64a3c79a68e92c10d80c94c3e8233</citedby><cites>FETCH-LOGICAL-c516t-9bb2213ad21aa45d5a358430349e61ebff1b64a3c79a68e92c10d80c94c3e8233</cites><orcidid>0000-0003-1768-2688 ; 0000-0001-8912-5165 ; 0000-0001-7138-5508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2422320167/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2422320167?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids></links><search><creatorcontrib>Sánchez Pedroche, David</creatorcontrib><creatorcontrib>Amigo, Daniel</creatorcontrib><creatorcontrib>García, Jesús</creatorcontrib><creatorcontrib>Molina, José Manuel</creatorcontrib><title>Architecture for Trajectory-Based Fishing Ship Classification with AIS Data</title><title>Sensors (Basel, Switzerland)</title><description>This paper proposes a data preparation process for managing real-world kinematic data and detecting fishing vessels. The solution is a binary classification that classifies ship trajectories into either fishing or non-fishing ships. The data used are characterized by the typical problems found in classic data mining applications using real-world data, such as noise and inconsistencies. The two classes are also clearly unbalanced in the data, a problem which is addressed using algorithms that resample the instances. For classification, a series of features are extracted from spatiotemporal data that represent the trajectories of the ships, available from sequences of Automatic Identification System (AIS) reports. These features are proposed for the modelling of ship behavior but, because they do not contain context-related information, the classification can be applied in other scenarios. Experimentation shows that the proposed data preparation process is useful for the presented classification problem. In addition, positive results are obtained using minimal information.</description><subject>AIS data</subject><subject>Algorithms</subject><subject>class imbalance</subject><subject>Classification</subject><subject>Collaboration</subject><subject>data fusion</subject><subject>Experimentation</subject><subject>Fishing</subject><subject>Identification systems</subject><subject>Kinematics</subject><subject>machine learning</subject><subject>Sensors</subject><subject>Sequences</subject><subject>spatiotemporal data mining</subject><subject>trajectory classification</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUFvFCEUx4nR2Fo9-A0m8aKHUeAxM3Ax2a6tbmziofVM3gCzw2Z2WIHR9NsXu01j5QI8fvmF9_6EvGX0I4CinxKnDKCT_Bk5ZYKLWnJOn_9zPiGvUtpRygFAviQnwFtBm5adku-raEafnclLdNUQYnUTcVeuId7W55icrS59Gv28ra5Hf6jWE6bkB28w-zBXf3weq9XmuvqCGV-TFwNOyb152M_Iz8uLm_W3-urH1816dVWbhrW5Vn3POQO0nCGKxjYIjRRAQSjXMtcPA-tbgWA6ha10ihtGraRGCQNOlhbOyObotQF3-hD9HuOtDuj1fSHErcaYvZmcts42LfC-cVIKPgy9MNYOgjWqLKOwuD4fXYel3ztr3JwjTk-kT19mP-pt-K076AQwVgTvHwQx_Fpcynrvk3HThLMLS9JclPlTpUAV9N1_6C4scS6juqegpNh2hfpwpEwMKUU3PH6GUf03bv0YN9wBRZGZ-g</recordid><startdate>20200706</startdate><enddate>20200706</enddate><creator>Sánchez Pedroche, David</creator><creator>Amigo, Daniel</creator><creator>García, Jesús</creator><creator>Molina, José Manuel</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1768-2688</orcidid><orcidid>https://orcid.org/0000-0001-8912-5165</orcidid><orcidid>https://orcid.org/0000-0001-7138-5508</orcidid></search><sort><creationdate>20200706</creationdate><title>Architecture for Trajectory-Based Fishing Ship Classification with AIS Data</title><author>Sánchez Pedroche, David ; Amigo, Daniel ; García, Jesús ; Molina, José Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-9bb2213ad21aa45d5a358430349e61ebff1b64a3c79a68e92c10d80c94c3e8233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AIS data</topic><topic>Algorithms</topic><topic>class imbalance</topic><topic>Classification</topic><topic>Collaboration</topic><topic>data fusion</topic><topic>Experimentation</topic><topic>Fishing</topic><topic>Identification systems</topic><topic>Kinematics</topic><topic>machine learning</topic><topic>Sensors</topic><topic>Sequences</topic><topic>spatiotemporal data mining</topic><topic>trajectory classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez Pedroche, David</creatorcontrib><creatorcontrib>Amigo, Daniel</creatorcontrib><creatorcontrib>García, Jesús</creatorcontrib><creatorcontrib>Molina, José Manuel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez Pedroche, David</au><au>Amigo, Daniel</au><au>García, Jesús</au><au>Molina, José Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architecture for Trajectory-Based Fishing Ship Classification with AIS Data</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2020-07-06</date><risdate>2020</risdate><volume>20</volume><issue>13</issue><spage>3782</spage><pages>3782-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This paper proposes a data preparation process for managing real-world kinematic data and detecting fishing vessels. The solution is a binary classification that classifies ship trajectories into either fishing or non-fishing ships. The data used are characterized by the typical problems found in classic data mining applications using real-world data, such as noise and inconsistencies. The two classes are also clearly unbalanced in the data, a problem which is addressed using algorithms that resample the instances. For classification, a series of features are extracted from spatiotemporal data that represent the trajectories of the ships, available from sequences of Automatic Identification System (AIS) reports. These features are proposed for the modelling of ship behavior but, because they do not contain context-related information, the classification can be applied in other scenarios. Experimentation shows that the proposed data preparation process is useful for the presented classification problem. In addition, positive results are obtained using minimal information.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32640561</pmid><doi>10.3390/s20133782</doi><orcidid>https://orcid.org/0000-0003-1768-2688</orcidid><orcidid>https://orcid.org/0000-0001-8912-5165</orcidid><orcidid>https://orcid.org/0000-0001-7138-5508</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2020-07, Vol.20 (13), p.3782 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ded5632b5e8842ffb4cddf4159999c9a |
source | Publicly Available Content Database; PubMed Central |
subjects | AIS data Algorithms class imbalance Classification Collaboration data fusion Experimentation Fishing Identification systems Kinematics machine learning Sensors Sequences spatiotemporal data mining trajectory classification |
title | Architecture for Trajectory-Based Fishing Ship Classification with AIS Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T19%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architecture%20for%20Trajectory-Based%20Fishing%20Ship%20Classification%20with%20AIS%20Data&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=S%C3%A1nchez%20Pedroche,%20David&rft.date=2020-07-06&rft.volume=20&rft.issue=13&rft.spage=3782&rft.pages=3782-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20133782&rft_dat=%3Cproquest_doaj_%3E2422009939%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c516t-9bb2213ad21aa45d5a358430349e61ebff1b64a3c79a68e92c10d80c94c3e8233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2422320167&rft_id=info:pmid/32640561&rfr_iscdi=true |