Loading…

Architecture for Trajectory-Based Fishing Ship Classification with AIS Data

This paper proposes a data preparation process for managing real-world kinematic data and detecting fishing vessels. The solution is a binary classification that classifies ship trajectories into either fishing or non-fishing ships. The data used are characterized by the typical problems found in cl...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-07, Vol.20 (13), p.3782
Main Authors: Sánchez Pedroche, David, Amigo, Daniel, García, Jesús, Molina, José Manuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c516t-9bb2213ad21aa45d5a358430349e61ebff1b64a3c79a68e92c10d80c94c3e8233
cites cdi_FETCH-LOGICAL-c516t-9bb2213ad21aa45d5a358430349e61ebff1b64a3c79a68e92c10d80c94c3e8233
container_end_page
container_issue 13
container_start_page 3782
container_title Sensors (Basel, Switzerland)
container_volume 20
creator Sánchez Pedroche, David
Amigo, Daniel
García, Jesús
Molina, José Manuel
description This paper proposes a data preparation process for managing real-world kinematic data and detecting fishing vessels. The solution is a binary classification that classifies ship trajectories into either fishing or non-fishing ships. The data used are characterized by the typical problems found in classic data mining applications using real-world data, such as noise and inconsistencies. The two classes are also clearly unbalanced in the data, a problem which is addressed using algorithms that resample the instances. For classification, a series of features are extracted from spatiotemporal data that represent the trajectories of the ships, available from sequences of Automatic Identification System (AIS) reports. These features are proposed for the modelling of ship behavior but, because they do not contain context-related information, the classification can be applied in other scenarios. Experimentation shows that the proposed data preparation process is useful for the presented classification problem. In addition, positive results are obtained using minimal information.
doi_str_mv 10.3390/s20133782
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ded5632b5e8842ffb4cddf4159999c9a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ded5632b5e8842ffb4cddf4159999c9a</doaj_id><sourcerecordid>2422009939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-9bb2213ad21aa45d5a358430349e61ebff1b64a3c79a68e92c10d80c94c3e8233</originalsourceid><addsrcrecordid>eNpdkUFvFCEUx4nR2Fo9-A0m8aKHUeAxM3Ax2a6tbmziofVM3gCzw2Z2WIHR9NsXu01j5QI8fvmF9_6EvGX0I4CinxKnDKCT_Bk5ZYKLWnJOn_9zPiGvUtpRygFAviQnwFtBm5adku-raEafnclLdNUQYnUTcVeuId7W55icrS59Gv28ra5Hf6jWE6bkB28w-zBXf3weq9XmuvqCGV-TFwNOyb152M_Iz8uLm_W3-urH1816dVWbhrW5Vn3POQO0nCGKxjYIjRRAQSjXMtcPA-tbgWA6ha10ihtGraRGCQNOlhbOyObotQF3-hD9HuOtDuj1fSHErcaYvZmcts42LfC-cVIKPgy9MNYOgjWqLKOwuD4fXYel3ztr3JwjTk-kT19mP-pt-K076AQwVgTvHwQx_Fpcynrvk3HThLMLS9JclPlTpUAV9N1_6C4scS6juqegpNh2hfpwpEwMKUU3PH6GUf03bv0YN9wBRZGZ-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422320167</pqid></control><display><type>article</type><title>Architecture for Trajectory-Based Fishing Ship Classification with AIS Data</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Sánchez Pedroche, David ; Amigo, Daniel ; García, Jesús ; Molina, José Manuel</creator><creatorcontrib>Sánchez Pedroche, David ; Amigo, Daniel ; García, Jesús ; Molina, José Manuel</creatorcontrib><description>This paper proposes a data preparation process for managing real-world kinematic data and detecting fishing vessels. The solution is a binary classification that classifies ship trajectories into either fishing or non-fishing ships. The data used are characterized by the typical problems found in classic data mining applications using real-world data, such as noise and inconsistencies. The two classes are also clearly unbalanced in the data, a problem which is addressed using algorithms that resample the instances. For classification, a series of features are extracted from spatiotemporal data that represent the trajectories of the ships, available from sequences of Automatic Identification System (AIS) reports. These features are proposed for the modelling of ship behavior but, because they do not contain context-related information, the classification can be applied in other scenarios. Experimentation shows that the proposed data preparation process is useful for the presented classification problem. In addition, positive results are obtained using minimal information.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20133782</identifier><identifier>PMID: 32640561</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>AIS data ; Algorithms ; class imbalance ; Classification ; Collaboration ; data fusion ; Experimentation ; Fishing ; Identification systems ; Kinematics ; machine learning ; Sensors ; Sequences ; spatiotemporal data mining ; trajectory classification</subject><ispartof>Sensors (Basel, Switzerland), 2020-07, Vol.20 (13), p.3782</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-9bb2213ad21aa45d5a358430349e61ebff1b64a3c79a68e92c10d80c94c3e8233</citedby><cites>FETCH-LOGICAL-c516t-9bb2213ad21aa45d5a358430349e61ebff1b64a3c79a68e92c10d80c94c3e8233</cites><orcidid>0000-0003-1768-2688 ; 0000-0001-8912-5165 ; 0000-0001-7138-5508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2422320167/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2422320167?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids></links><search><creatorcontrib>Sánchez Pedroche, David</creatorcontrib><creatorcontrib>Amigo, Daniel</creatorcontrib><creatorcontrib>García, Jesús</creatorcontrib><creatorcontrib>Molina, José Manuel</creatorcontrib><title>Architecture for Trajectory-Based Fishing Ship Classification with AIS Data</title><title>Sensors (Basel, Switzerland)</title><description>This paper proposes a data preparation process for managing real-world kinematic data and detecting fishing vessels. The solution is a binary classification that classifies ship trajectories into either fishing or non-fishing ships. The data used are characterized by the typical problems found in classic data mining applications using real-world data, such as noise and inconsistencies. The two classes are also clearly unbalanced in the data, a problem which is addressed using algorithms that resample the instances. For classification, a series of features are extracted from spatiotemporal data that represent the trajectories of the ships, available from sequences of Automatic Identification System (AIS) reports. These features are proposed for the modelling of ship behavior but, because they do not contain context-related information, the classification can be applied in other scenarios. Experimentation shows that the proposed data preparation process is useful for the presented classification problem. In addition, positive results are obtained using minimal information.</description><subject>AIS data</subject><subject>Algorithms</subject><subject>class imbalance</subject><subject>Classification</subject><subject>Collaboration</subject><subject>data fusion</subject><subject>Experimentation</subject><subject>Fishing</subject><subject>Identification systems</subject><subject>Kinematics</subject><subject>machine learning</subject><subject>Sensors</subject><subject>Sequences</subject><subject>spatiotemporal data mining</subject><subject>trajectory classification</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUFvFCEUx4nR2Fo9-A0m8aKHUeAxM3Ax2a6tbmziofVM3gCzw2Z2WIHR9NsXu01j5QI8fvmF9_6EvGX0I4CinxKnDKCT_Bk5ZYKLWnJOn_9zPiGvUtpRygFAviQnwFtBm5adku-raEafnclLdNUQYnUTcVeuId7W55icrS59Gv28ra5Hf6jWE6bkB28w-zBXf3weq9XmuvqCGV-TFwNOyb152M_Iz8uLm_W3-urH1816dVWbhrW5Vn3POQO0nCGKxjYIjRRAQSjXMtcPA-tbgWA6ha10ihtGraRGCQNOlhbOyObotQF3-hD9HuOtDuj1fSHErcaYvZmcts42LfC-cVIKPgy9MNYOgjWqLKOwuD4fXYel3ztr3JwjTk-kT19mP-pt-K076AQwVgTvHwQx_Fpcynrvk3HThLMLS9JclPlTpUAV9N1_6C4scS6juqegpNh2hfpwpEwMKUU3PH6GUf03bv0YN9wBRZGZ-g</recordid><startdate>20200706</startdate><enddate>20200706</enddate><creator>Sánchez Pedroche, David</creator><creator>Amigo, Daniel</creator><creator>García, Jesús</creator><creator>Molina, José Manuel</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1768-2688</orcidid><orcidid>https://orcid.org/0000-0001-8912-5165</orcidid><orcidid>https://orcid.org/0000-0001-7138-5508</orcidid></search><sort><creationdate>20200706</creationdate><title>Architecture for Trajectory-Based Fishing Ship Classification with AIS Data</title><author>Sánchez Pedroche, David ; Amigo, Daniel ; García, Jesús ; Molina, José Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-9bb2213ad21aa45d5a358430349e61ebff1b64a3c79a68e92c10d80c94c3e8233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AIS data</topic><topic>Algorithms</topic><topic>class imbalance</topic><topic>Classification</topic><topic>Collaboration</topic><topic>data fusion</topic><topic>Experimentation</topic><topic>Fishing</topic><topic>Identification systems</topic><topic>Kinematics</topic><topic>machine learning</topic><topic>Sensors</topic><topic>Sequences</topic><topic>spatiotemporal data mining</topic><topic>trajectory classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez Pedroche, David</creatorcontrib><creatorcontrib>Amigo, Daniel</creatorcontrib><creatorcontrib>García, Jesús</creatorcontrib><creatorcontrib>Molina, José Manuel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez Pedroche, David</au><au>Amigo, Daniel</au><au>García, Jesús</au><au>Molina, José Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architecture for Trajectory-Based Fishing Ship Classification with AIS Data</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2020-07-06</date><risdate>2020</risdate><volume>20</volume><issue>13</issue><spage>3782</spage><pages>3782-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This paper proposes a data preparation process for managing real-world kinematic data and detecting fishing vessels. The solution is a binary classification that classifies ship trajectories into either fishing or non-fishing ships. The data used are characterized by the typical problems found in classic data mining applications using real-world data, such as noise and inconsistencies. The two classes are also clearly unbalanced in the data, a problem which is addressed using algorithms that resample the instances. For classification, a series of features are extracted from spatiotemporal data that represent the trajectories of the ships, available from sequences of Automatic Identification System (AIS) reports. These features are proposed for the modelling of ship behavior but, because they do not contain context-related information, the classification can be applied in other scenarios. Experimentation shows that the proposed data preparation process is useful for the presented classification problem. In addition, positive results are obtained using minimal information.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32640561</pmid><doi>10.3390/s20133782</doi><orcidid>https://orcid.org/0000-0003-1768-2688</orcidid><orcidid>https://orcid.org/0000-0001-8912-5165</orcidid><orcidid>https://orcid.org/0000-0001-7138-5508</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2020-07, Vol.20 (13), p.3782
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ded5632b5e8842ffb4cddf4159999c9a
source Publicly Available Content Database; PubMed Central
subjects AIS data
Algorithms
class imbalance
Classification
Collaboration
data fusion
Experimentation
Fishing
Identification systems
Kinematics
machine learning
Sensors
Sequences
spatiotemporal data mining
trajectory classification
title Architecture for Trajectory-Based Fishing Ship Classification with AIS Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T19%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architecture%20for%20Trajectory-Based%20Fishing%20Ship%20Classification%20with%20AIS%20Data&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=S%C3%A1nchez%20Pedroche,%20David&rft.date=2020-07-06&rft.volume=20&rft.issue=13&rft.spage=3782&rft.pages=3782-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20133782&rft_dat=%3Cproquest_doaj_%3E2422009939%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c516t-9bb2213ad21aa45d5a358430349e61ebff1b64a3c79a68e92c10d80c94c3e8233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2422320167&rft_id=info:pmid/32640561&rfr_iscdi=true