Loading…
Bimetallic Pt-Ni Nanoparticles Confined in Porous Titanium Oxide Cage for Hydrogen Generation from NaBH4 Hydrolysis
Sodium borohydride (NaBH4), with a high theoretical hydrogen content (10.8 wt%) and safe characteristics, has been widely employed to produce hydrogen based on hydrolysis reactions. In this work, a porous titanium oxide cage (PTOC) has been synthesized by a one-step hydrothermal method using NH2-MIL...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2022-07, Vol.12 (15), p.2550 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-fe11b36387d2d9b43def9c5d771fa4edeac7991e862fe3bbf3c9c773385b93643 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-fe11b36387d2d9b43def9c5d771fa4edeac7991e862fe3bbf3c9c773385b93643 |
container_end_page | |
container_issue | 15 |
container_start_page | 2550 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 12 |
creator | Yu, Yuqian Kang, Li Sun, Lixian Xu, Fen Pan, Hongge Sang, Zhen Zhang, Chenchen Jia, Xinlei Sui, Qingli Bu, Yiting Cai, Dan Xia, Yongpeng Zhang, Kexiang Li, Bin |
description | Sodium borohydride (NaBH4), with a high theoretical hydrogen content (10.8 wt%) and safe characteristics, has been widely employed to produce hydrogen based on hydrolysis reactions. In this work, a porous titanium oxide cage (PTOC) has been synthesized by a one-step hydrothermal method using NH2-MIL-125 as the template and L-alanine as the coordination agent. Due to the evenly distributed PtNi alloy particles with more catalytically active sites, and the synergistic effect between the PTOC and PtNi alloy particles, the PtNi/PTOC catalyst presents a high hydrogen generation rate (10,164.3 mL∙min−1∙g−1) and low activation energy (28.7 kJ∙mol−1). Furthermore, the robust porous structure of PTOC effectively suppresses the agglomeration issue; thus, the PtNi/PTOC catalyst retains 87.8% of the initial catalytic activity after eight cycles. These results indicate that the PtNi/PTOC catalyst has broad applications for the hydrolysis of borohydride. |
doi_str_mv | 10.3390/nano12152550 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dedb3623d6304edfaab65718250c6def</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dedb3623d6304edfaab65718250c6def</doaj_id><sourcerecordid>2700740335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-fe11b36387d2d9b43def9c5d771fa4edeac7991e862fe3bbf3c9c773385b93643</originalsourceid><addsrcrecordid>eNpdksFu1DAQhiMEolXpjQewxIUDobYnTuILEl1Bt1LV9lDOlmOPF68Se7ETxL49LrtCbefikefXN_OPpqreM_oZQNKLoENknAkuBH1VnXLaybqRkr1-kp9U5zlvaQnJoBfwtjoB0UsQrD-t8qWfcNbj6A25n-tbT24LcqfT7M2ImaxicD6gJT6Q-5jiksmDn3Xwy0Tu_niLZKU3SFxMZL23KW4wkCsMmPTsYyAuxakQL9fNoTzus8_vqjdOjxnPj-9Z9eP7t4fVur65u7pefb2pTSPEXDtkbIAW-s5yK4cGLDpphO065nSDFrXpij3sW-4QhsGBkabroHgcJLQNnFXXB66Neqt2yU867VXUXv37iGmjjj6VRVtacbAt0IJ2Wg-t6FjPBTVt6VtYXw6s3TJMaA2GOenxGfR5JfifahN_KwnAZCMK4OMRkOKvBfOsJp8NjqMOWLaqeCsFlxxkW6QfXki3cUmhrErxjtKuoQCPwE8HlUkx54Tu_zCMqsfjUE-PA_4CL0us3A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700740335</pqid></control><display><type>article</type><title>Bimetallic Pt-Ni Nanoparticles Confined in Porous Titanium Oxide Cage for Hydrogen Generation from NaBH4 Hydrolysis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yu, Yuqian ; Kang, Li ; Sun, Lixian ; Xu, Fen ; Pan, Hongge ; Sang, Zhen ; Zhang, Chenchen ; Jia, Xinlei ; Sui, Qingli ; Bu, Yiting ; Cai, Dan ; Xia, Yongpeng ; Zhang, Kexiang ; Li, Bin</creator><creatorcontrib>Yu, Yuqian ; Kang, Li ; Sun, Lixian ; Xu, Fen ; Pan, Hongge ; Sang, Zhen ; Zhang, Chenchen ; Jia, Xinlei ; Sui, Qingli ; Bu, Yiting ; Cai, Dan ; Xia, Yongpeng ; Zhang, Kexiang ; Li, Bin</creatorcontrib><description>Sodium borohydride (NaBH4), with a high theoretical hydrogen content (10.8 wt%) and safe characteristics, has been widely employed to produce hydrogen based on hydrolysis reactions. In this work, a porous titanium oxide cage (PTOC) has been synthesized by a one-step hydrothermal method using NH2-MIL-125 as the template and L-alanine as the coordination agent. Due to the evenly distributed PtNi alloy particles with more catalytically active sites, and the synergistic effect between the PTOC and PtNi alloy particles, the PtNi/PTOC catalyst presents a high hydrogen generation rate (10,164.3 mL∙min−1∙g−1) and low activation energy (28.7 kJ∙mol−1). Furthermore, the robust porous structure of PTOC effectively suppresses the agglomeration issue; thus, the PtNi/PTOC catalyst retains 87.8% of the initial catalytic activity after eight cycles. These results indicate that the PtNi/PTOC catalyst has broad applications for the hydrolysis of borohydride.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano12152550</identifier><identifier>PMID: 35893518</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alanine ; Bimetals ; Borohydrides ; Cages ; Carbon ; Catalysis ; Catalysts ; Catalytic activity ; Energy ; Ethanol ; Hydrogen ; hydrogen generation ; Hydrogen production ; Hydrolysis ; Intermetallic compounds ; L-Alanine ; Morphology ; Nanoparticles ; Nitrates ; Porous materials ; porous titanium oxide cage ; PtNi nanoparticles ; sodium borohydride hydrolysis ; Spectrum analysis ; Synergistic effect ; Titanium ; Titanium oxide ; Titanium oxides</subject><ispartof>Nanomaterials (Basel, Switzerland), 2022-07, Vol.12 (15), p.2550</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-fe11b36387d2d9b43def9c5d771fa4edeac7991e862fe3bbf3c9c773385b93643</citedby><cites>FETCH-LOGICAL-c455t-fe11b36387d2d9b43def9c5d771fa4edeac7991e862fe3bbf3c9c773385b93643</cites><orcidid>0000-0003-4684-683X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2700740335/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2700740335?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Yu, Yuqian</creatorcontrib><creatorcontrib>Kang, Li</creatorcontrib><creatorcontrib>Sun, Lixian</creatorcontrib><creatorcontrib>Xu, Fen</creatorcontrib><creatorcontrib>Pan, Hongge</creatorcontrib><creatorcontrib>Sang, Zhen</creatorcontrib><creatorcontrib>Zhang, Chenchen</creatorcontrib><creatorcontrib>Jia, Xinlei</creatorcontrib><creatorcontrib>Sui, Qingli</creatorcontrib><creatorcontrib>Bu, Yiting</creatorcontrib><creatorcontrib>Cai, Dan</creatorcontrib><creatorcontrib>Xia, Yongpeng</creatorcontrib><creatorcontrib>Zhang, Kexiang</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><title>Bimetallic Pt-Ni Nanoparticles Confined in Porous Titanium Oxide Cage for Hydrogen Generation from NaBH4 Hydrolysis</title><title>Nanomaterials (Basel, Switzerland)</title><description>Sodium borohydride (NaBH4), with a high theoretical hydrogen content (10.8 wt%) and safe characteristics, has been widely employed to produce hydrogen based on hydrolysis reactions. In this work, a porous titanium oxide cage (PTOC) has been synthesized by a one-step hydrothermal method using NH2-MIL-125 as the template and L-alanine as the coordination agent. Due to the evenly distributed PtNi alloy particles with more catalytically active sites, and the synergistic effect between the PTOC and PtNi alloy particles, the PtNi/PTOC catalyst presents a high hydrogen generation rate (10,164.3 mL∙min−1∙g−1) and low activation energy (28.7 kJ∙mol−1). Furthermore, the robust porous structure of PTOC effectively suppresses the agglomeration issue; thus, the PtNi/PTOC catalyst retains 87.8% of the initial catalytic activity after eight cycles. These results indicate that the PtNi/PTOC catalyst has broad applications for the hydrolysis of borohydride.</description><subject>Alanine</subject><subject>Bimetals</subject><subject>Borohydrides</subject><subject>Cages</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Energy</subject><subject>Ethanol</subject><subject>Hydrogen</subject><subject>hydrogen generation</subject><subject>Hydrogen production</subject><subject>Hydrolysis</subject><subject>Intermetallic compounds</subject><subject>L-Alanine</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nitrates</subject><subject>Porous materials</subject><subject>porous titanium oxide cage</subject><subject>PtNi nanoparticles</subject><subject>sodium borohydride hydrolysis</subject><subject>Spectrum analysis</subject><subject>Synergistic effect</subject><subject>Titanium</subject><subject>Titanium oxide</subject><subject>Titanium oxides</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdksFu1DAQhiMEolXpjQewxIUDobYnTuILEl1Bt1LV9lDOlmOPF68Se7ETxL49LrtCbefikefXN_OPpqreM_oZQNKLoENknAkuBH1VnXLaybqRkr1-kp9U5zlvaQnJoBfwtjoB0UsQrD-t8qWfcNbj6A25n-tbT24LcqfT7M2ImaxicD6gJT6Q-5jiksmDn3Xwy0Tu_niLZKU3SFxMZL23KW4wkCsMmPTsYyAuxakQL9fNoTzus8_vqjdOjxnPj-9Z9eP7t4fVur65u7pefb2pTSPEXDtkbIAW-s5yK4cGLDpphO065nSDFrXpij3sW-4QhsGBkabroHgcJLQNnFXXB66Neqt2yU867VXUXv37iGmjjj6VRVtacbAt0IJ2Wg-t6FjPBTVt6VtYXw6s3TJMaA2GOenxGfR5JfifahN_KwnAZCMK4OMRkOKvBfOsJp8NjqMOWLaqeCsFlxxkW6QfXki3cUmhrErxjtKuoQCPwE8HlUkx54Tu_zCMqsfjUE-PA_4CL0us3A</recordid><startdate>20220725</startdate><enddate>20220725</enddate><creator>Yu, Yuqian</creator><creator>Kang, Li</creator><creator>Sun, Lixian</creator><creator>Xu, Fen</creator><creator>Pan, Hongge</creator><creator>Sang, Zhen</creator><creator>Zhang, Chenchen</creator><creator>Jia, Xinlei</creator><creator>Sui, Qingli</creator><creator>Bu, Yiting</creator><creator>Cai, Dan</creator><creator>Xia, Yongpeng</creator><creator>Zhang, Kexiang</creator><creator>Li, Bin</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4684-683X</orcidid></search><sort><creationdate>20220725</creationdate><title>Bimetallic Pt-Ni Nanoparticles Confined in Porous Titanium Oxide Cage for Hydrogen Generation from NaBH4 Hydrolysis</title><author>Yu, Yuqian ; Kang, Li ; Sun, Lixian ; Xu, Fen ; Pan, Hongge ; Sang, Zhen ; Zhang, Chenchen ; Jia, Xinlei ; Sui, Qingli ; Bu, Yiting ; Cai, Dan ; Xia, Yongpeng ; Zhang, Kexiang ; Li, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-fe11b36387d2d9b43def9c5d771fa4edeac7991e862fe3bbf3c9c773385b93643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alanine</topic><topic>Bimetals</topic><topic>Borohydrides</topic><topic>Cages</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Energy</topic><topic>Ethanol</topic><topic>Hydrogen</topic><topic>hydrogen generation</topic><topic>Hydrogen production</topic><topic>Hydrolysis</topic><topic>Intermetallic compounds</topic><topic>L-Alanine</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nitrates</topic><topic>Porous materials</topic><topic>porous titanium oxide cage</topic><topic>PtNi nanoparticles</topic><topic>sodium borohydride hydrolysis</topic><topic>Spectrum analysis</topic><topic>Synergistic effect</topic><topic>Titanium</topic><topic>Titanium oxide</topic><topic>Titanium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yuqian</creatorcontrib><creatorcontrib>Kang, Li</creatorcontrib><creatorcontrib>Sun, Lixian</creatorcontrib><creatorcontrib>Xu, Fen</creatorcontrib><creatorcontrib>Pan, Hongge</creatorcontrib><creatorcontrib>Sang, Zhen</creatorcontrib><creatorcontrib>Zhang, Chenchen</creatorcontrib><creatorcontrib>Jia, Xinlei</creatorcontrib><creatorcontrib>Sui, Qingli</creatorcontrib><creatorcontrib>Bu, Yiting</creatorcontrib><creatorcontrib>Cai, Dan</creatorcontrib><creatorcontrib>Xia, Yongpeng</creatorcontrib><creatorcontrib>Zhang, Kexiang</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yuqian</au><au>Kang, Li</au><au>Sun, Lixian</au><au>Xu, Fen</au><au>Pan, Hongge</au><au>Sang, Zhen</au><au>Zhang, Chenchen</au><au>Jia, Xinlei</au><au>Sui, Qingli</au><au>Bu, Yiting</au><au>Cai, Dan</au><au>Xia, Yongpeng</au><au>Zhang, Kexiang</au><au>Li, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bimetallic Pt-Ni Nanoparticles Confined in Porous Titanium Oxide Cage for Hydrogen Generation from NaBH4 Hydrolysis</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2022-07-25</date><risdate>2022</risdate><volume>12</volume><issue>15</issue><spage>2550</spage><pages>2550-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Sodium borohydride (NaBH4), with a high theoretical hydrogen content (10.8 wt%) and safe characteristics, has been widely employed to produce hydrogen based on hydrolysis reactions. In this work, a porous titanium oxide cage (PTOC) has been synthesized by a one-step hydrothermal method using NH2-MIL-125 as the template and L-alanine as the coordination agent. Due to the evenly distributed PtNi alloy particles with more catalytically active sites, and the synergistic effect between the PTOC and PtNi alloy particles, the PtNi/PTOC catalyst presents a high hydrogen generation rate (10,164.3 mL∙min−1∙g−1) and low activation energy (28.7 kJ∙mol−1). Furthermore, the robust porous structure of PTOC effectively suppresses the agglomeration issue; thus, the PtNi/PTOC catalyst retains 87.8% of the initial catalytic activity after eight cycles. These results indicate that the PtNi/PTOC catalyst has broad applications for the hydrolysis of borohydride.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35893518</pmid><doi>10.3390/nano12152550</doi><orcidid>https://orcid.org/0000-0003-4684-683X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2022-07, Vol.12 (15), p.2550 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_dedb3623d6304edfaab65718250c6def |
source | Publicly Available Content Database; PubMed Central |
subjects | Alanine Bimetals Borohydrides Cages Carbon Catalysis Catalysts Catalytic activity Energy Ethanol Hydrogen hydrogen generation Hydrogen production Hydrolysis Intermetallic compounds L-Alanine Morphology Nanoparticles Nitrates Porous materials porous titanium oxide cage PtNi nanoparticles sodium borohydride hydrolysis Spectrum analysis Synergistic effect Titanium Titanium oxide Titanium oxides |
title | Bimetallic Pt-Ni Nanoparticles Confined in Porous Titanium Oxide Cage for Hydrogen Generation from NaBH4 Hydrolysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bimetallic%20Pt-Ni%20Nanoparticles%20Confined%20in%20Porous%20Titanium%20Oxide%20Cage%20for%20Hydrogen%20Generation%20from%20NaBH4%20Hydrolysis&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Yu,%20Yuqian&rft.date=2022-07-25&rft.volume=12&rft.issue=15&rft.spage=2550&rft.pages=2550-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano12152550&rft_dat=%3Cproquest_doaj_%3E2700740335%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-fe11b36387d2d9b43def9c5d771fa4edeac7991e862fe3bbf3c9c773385b93643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2700740335&rft_id=info:pmid/35893518&rfr_iscdi=true |