Loading…

Bimetallic Pt-Ni Nanoparticles Confined in Porous Titanium Oxide Cage for Hydrogen Generation from NaBH4 Hydrolysis

Sodium borohydride (NaBH4), with a high theoretical hydrogen content (10.8 wt%) and safe characteristics, has been widely employed to produce hydrogen based on hydrolysis reactions. In this work, a porous titanium oxide cage (PTOC) has been synthesized by a one-step hydrothermal method using NH2-MIL...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2022-07, Vol.12 (15), p.2550
Main Authors: Yu, Yuqian, Kang, Li, Sun, Lixian, Xu, Fen, Pan, Hongge, Sang, Zhen, Zhang, Chenchen, Jia, Xinlei, Sui, Qingli, Bu, Yiting, Cai, Dan, Xia, Yongpeng, Zhang, Kexiang, Li, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-fe11b36387d2d9b43def9c5d771fa4edeac7991e862fe3bbf3c9c773385b93643
cites cdi_FETCH-LOGICAL-c455t-fe11b36387d2d9b43def9c5d771fa4edeac7991e862fe3bbf3c9c773385b93643
container_end_page
container_issue 15
container_start_page 2550
container_title Nanomaterials (Basel, Switzerland)
container_volume 12
creator Yu, Yuqian
Kang, Li
Sun, Lixian
Xu, Fen
Pan, Hongge
Sang, Zhen
Zhang, Chenchen
Jia, Xinlei
Sui, Qingli
Bu, Yiting
Cai, Dan
Xia, Yongpeng
Zhang, Kexiang
Li, Bin
description Sodium borohydride (NaBH4), with a high theoretical hydrogen content (10.8 wt%) and safe characteristics, has been widely employed to produce hydrogen based on hydrolysis reactions. In this work, a porous titanium oxide cage (PTOC) has been synthesized by a one-step hydrothermal method using NH2-MIL-125 as the template and L-alanine as the coordination agent. Due to the evenly distributed PtNi alloy particles with more catalytically active sites, and the synergistic effect between the PTOC and PtNi alloy particles, the PtNi/PTOC catalyst presents a high hydrogen generation rate (10,164.3 mL∙min−1∙g−1) and low activation energy (28.7 kJ∙mol−1). Furthermore, the robust porous structure of PTOC effectively suppresses the agglomeration issue; thus, the PtNi/PTOC catalyst retains 87.8% of the initial catalytic activity after eight cycles. These results indicate that the PtNi/PTOC catalyst has broad applications for the hydrolysis of borohydride.
doi_str_mv 10.3390/nano12152550
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dedb3623d6304edfaab65718250c6def</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dedb3623d6304edfaab65718250c6def</doaj_id><sourcerecordid>2700740335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-fe11b36387d2d9b43def9c5d771fa4edeac7991e862fe3bbf3c9c773385b93643</originalsourceid><addsrcrecordid>eNpdksFu1DAQhiMEolXpjQewxIUDobYnTuILEl1Bt1LV9lDOlmOPF68Se7ETxL49LrtCbefikefXN_OPpqreM_oZQNKLoENknAkuBH1VnXLaybqRkr1-kp9U5zlvaQnJoBfwtjoB0UsQrD-t8qWfcNbj6A25n-tbT24LcqfT7M2ImaxicD6gJT6Q-5jiksmDn3Xwy0Tu_niLZKU3SFxMZL23KW4wkCsMmPTsYyAuxakQL9fNoTzus8_vqjdOjxnPj-9Z9eP7t4fVur65u7pefb2pTSPEXDtkbIAW-s5yK4cGLDpphO065nSDFrXpij3sW-4QhsGBkabroHgcJLQNnFXXB66Neqt2yU867VXUXv37iGmjjj6VRVtacbAt0IJ2Wg-t6FjPBTVt6VtYXw6s3TJMaA2GOenxGfR5JfifahN_KwnAZCMK4OMRkOKvBfOsJp8NjqMOWLaqeCsFlxxkW6QfXki3cUmhrErxjtKuoQCPwE8HlUkx54Tu_zCMqsfjUE-PA_4CL0us3A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700740335</pqid></control><display><type>article</type><title>Bimetallic Pt-Ni Nanoparticles Confined in Porous Titanium Oxide Cage for Hydrogen Generation from NaBH4 Hydrolysis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yu, Yuqian ; Kang, Li ; Sun, Lixian ; Xu, Fen ; Pan, Hongge ; Sang, Zhen ; Zhang, Chenchen ; Jia, Xinlei ; Sui, Qingli ; Bu, Yiting ; Cai, Dan ; Xia, Yongpeng ; Zhang, Kexiang ; Li, Bin</creator><creatorcontrib>Yu, Yuqian ; Kang, Li ; Sun, Lixian ; Xu, Fen ; Pan, Hongge ; Sang, Zhen ; Zhang, Chenchen ; Jia, Xinlei ; Sui, Qingli ; Bu, Yiting ; Cai, Dan ; Xia, Yongpeng ; Zhang, Kexiang ; Li, Bin</creatorcontrib><description>Sodium borohydride (NaBH4), with a high theoretical hydrogen content (10.8 wt%) and safe characteristics, has been widely employed to produce hydrogen based on hydrolysis reactions. In this work, a porous titanium oxide cage (PTOC) has been synthesized by a one-step hydrothermal method using NH2-MIL-125 as the template and L-alanine as the coordination agent. Due to the evenly distributed PtNi alloy particles with more catalytically active sites, and the synergistic effect between the PTOC and PtNi alloy particles, the PtNi/PTOC catalyst presents a high hydrogen generation rate (10,164.3 mL∙min−1∙g−1) and low activation energy (28.7 kJ∙mol−1). Furthermore, the robust porous structure of PTOC effectively suppresses the agglomeration issue; thus, the PtNi/PTOC catalyst retains 87.8% of the initial catalytic activity after eight cycles. These results indicate that the PtNi/PTOC catalyst has broad applications for the hydrolysis of borohydride.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano12152550</identifier><identifier>PMID: 35893518</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alanine ; Bimetals ; Borohydrides ; Cages ; Carbon ; Catalysis ; Catalysts ; Catalytic activity ; Energy ; Ethanol ; Hydrogen ; hydrogen generation ; Hydrogen production ; Hydrolysis ; Intermetallic compounds ; L-Alanine ; Morphology ; Nanoparticles ; Nitrates ; Porous materials ; porous titanium oxide cage ; PtNi nanoparticles ; sodium borohydride hydrolysis ; Spectrum analysis ; Synergistic effect ; Titanium ; Titanium oxide ; Titanium oxides</subject><ispartof>Nanomaterials (Basel, Switzerland), 2022-07, Vol.12 (15), p.2550</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-fe11b36387d2d9b43def9c5d771fa4edeac7991e862fe3bbf3c9c773385b93643</citedby><cites>FETCH-LOGICAL-c455t-fe11b36387d2d9b43def9c5d771fa4edeac7991e862fe3bbf3c9c773385b93643</cites><orcidid>0000-0003-4684-683X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2700740335/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2700740335?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Yu, Yuqian</creatorcontrib><creatorcontrib>Kang, Li</creatorcontrib><creatorcontrib>Sun, Lixian</creatorcontrib><creatorcontrib>Xu, Fen</creatorcontrib><creatorcontrib>Pan, Hongge</creatorcontrib><creatorcontrib>Sang, Zhen</creatorcontrib><creatorcontrib>Zhang, Chenchen</creatorcontrib><creatorcontrib>Jia, Xinlei</creatorcontrib><creatorcontrib>Sui, Qingli</creatorcontrib><creatorcontrib>Bu, Yiting</creatorcontrib><creatorcontrib>Cai, Dan</creatorcontrib><creatorcontrib>Xia, Yongpeng</creatorcontrib><creatorcontrib>Zhang, Kexiang</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><title>Bimetallic Pt-Ni Nanoparticles Confined in Porous Titanium Oxide Cage for Hydrogen Generation from NaBH4 Hydrolysis</title><title>Nanomaterials (Basel, Switzerland)</title><description>Sodium borohydride (NaBH4), with a high theoretical hydrogen content (10.8 wt%) and safe characteristics, has been widely employed to produce hydrogen based on hydrolysis reactions. In this work, a porous titanium oxide cage (PTOC) has been synthesized by a one-step hydrothermal method using NH2-MIL-125 as the template and L-alanine as the coordination agent. Due to the evenly distributed PtNi alloy particles with more catalytically active sites, and the synergistic effect between the PTOC and PtNi alloy particles, the PtNi/PTOC catalyst presents a high hydrogen generation rate (10,164.3 mL∙min−1∙g−1) and low activation energy (28.7 kJ∙mol−1). Furthermore, the robust porous structure of PTOC effectively suppresses the agglomeration issue; thus, the PtNi/PTOC catalyst retains 87.8% of the initial catalytic activity after eight cycles. These results indicate that the PtNi/PTOC catalyst has broad applications for the hydrolysis of borohydride.</description><subject>Alanine</subject><subject>Bimetals</subject><subject>Borohydrides</subject><subject>Cages</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Energy</subject><subject>Ethanol</subject><subject>Hydrogen</subject><subject>hydrogen generation</subject><subject>Hydrogen production</subject><subject>Hydrolysis</subject><subject>Intermetallic compounds</subject><subject>L-Alanine</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nitrates</subject><subject>Porous materials</subject><subject>porous titanium oxide cage</subject><subject>PtNi nanoparticles</subject><subject>sodium borohydride hydrolysis</subject><subject>Spectrum analysis</subject><subject>Synergistic effect</subject><subject>Titanium</subject><subject>Titanium oxide</subject><subject>Titanium oxides</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdksFu1DAQhiMEolXpjQewxIUDobYnTuILEl1Bt1LV9lDOlmOPF68Se7ETxL49LrtCbefikefXN_OPpqreM_oZQNKLoENknAkuBH1VnXLaybqRkr1-kp9U5zlvaQnJoBfwtjoB0UsQrD-t8qWfcNbj6A25n-tbT24LcqfT7M2ImaxicD6gJT6Q-5jiksmDn3Xwy0Tu_niLZKU3SFxMZL23KW4wkCsMmPTsYyAuxakQL9fNoTzus8_vqjdOjxnPj-9Z9eP7t4fVur65u7pefb2pTSPEXDtkbIAW-s5yK4cGLDpphO065nSDFrXpij3sW-4QhsGBkabroHgcJLQNnFXXB66Neqt2yU867VXUXv37iGmjjj6VRVtacbAt0IJ2Wg-t6FjPBTVt6VtYXw6s3TJMaA2GOenxGfR5JfifahN_KwnAZCMK4OMRkOKvBfOsJp8NjqMOWLaqeCsFlxxkW6QfXki3cUmhrErxjtKuoQCPwE8HlUkx54Tu_zCMqsfjUE-PA_4CL0us3A</recordid><startdate>20220725</startdate><enddate>20220725</enddate><creator>Yu, Yuqian</creator><creator>Kang, Li</creator><creator>Sun, Lixian</creator><creator>Xu, Fen</creator><creator>Pan, Hongge</creator><creator>Sang, Zhen</creator><creator>Zhang, Chenchen</creator><creator>Jia, Xinlei</creator><creator>Sui, Qingli</creator><creator>Bu, Yiting</creator><creator>Cai, Dan</creator><creator>Xia, Yongpeng</creator><creator>Zhang, Kexiang</creator><creator>Li, Bin</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4684-683X</orcidid></search><sort><creationdate>20220725</creationdate><title>Bimetallic Pt-Ni Nanoparticles Confined in Porous Titanium Oxide Cage for Hydrogen Generation from NaBH4 Hydrolysis</title><author>Yu, Yuqian ; Kang, Li ; Sun, Lixian ; Xu, Fen ; Pan, Hongge ; Sang, Zhen ; Zhang, Chenchen ; Jia, Xinlei ; Sui, Qingli ; Bu, Yiting ; Cai, Dan ; Xia, Yongpeng ; Zhang, Kexiang ; Li, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-fe11b36387d2d9b43def9c5d771fa4edeac7991e862fe3bbf3c9c773385b93643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alanine</topic><topic>Bimetals</topic><topic>Borohydrides</topic><topic>Cages</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Energy</topic><topic>Ethanol</topic><topic>Hydrogen</topic><topic>hydrogen generation</topic><topic>Hydrogen production</topic><topic>Hydrolysis</topic><topic>Intermetallic compounds</topic><topic>L-Alanine</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nitrates</topic><topic>Porous materials</topic><topic>porous titanium oxide cage</topic><topic>PtNi nanoparticles</topic><topic>sodium borohydride hydrolysis</topic><topic>Spectrum analysis</topic><topic>Synergistic effect</topic><topic>Titanium</topic><topic>Titanium oxide</topic><topic>Titanium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yuqian</creatorcontrib><creatorcontrib>Kang, Li</creatorcontrib><creatorcontrib>Sun, Lixian</creatorcontrib><creatorcontrib>Xu, Fen</creatorcontrib><creatorcontrib>Pan, Hongge</creatorcontrib><creatorcontrib>Sang, Zhen</creatorcontrib><creatorcontrib>Zhang, Chenchen</creatorcontrib><creatorcontrib>Jia, Xinlei</creatorcontrib><creatorcontrib>Sui, Qingli</creatorcontrib><creatorcontrib>Bu, Yiting</creatorcontrib><creatorcontrib>Cai, Dan</creatorcontrib><creatorcontrib>Xia, Yongpeng</creatorcontrib><creatorcontrib>Zhang, Kexiang</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yuqian</au><au>Kang, Li</au><au>Sun, Lixian</au><au>Xu, Fen</au><au>Pan, Hongge</au><au>Sang, Zhen</au><au>Zhang, Chenchen</au><au>Jia, Xinlei</au><au>Sui, Qingli</au><au>Bu, Yiting</au><au>Cai, Dan</au><au>Xia, Yongpeng</au><au>Zhang, Kexiang</au><au>Li, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bimetallic Pt-Ni Nanoparticles Confined in Porous Titanium Oxide Cage for Hydrogen Generation from NaBH4 Hydrolysis</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2022-07-25</date><risdate>2022</risdate><volume>12</volume><issue>15</issue><spage>2550</spage><pages>2550-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Sodium borohydride (NaBH4), with a high theoretical hydrogen content (10.8 wt%) and safe characteristics, has been widely employed to produce hydrogen based on hydrolysis reactions. In this work, a porous titanium oxide cage (PTOC) has been synthesized by a one-step hydrothermal method using NH2-MIL-125 as the template and L-alanine as the coordination agent. Due to the evenly distributed PtNi alloy particles with more catalytically active sites, and the synergistic effect between the PTOC and PtNi alloy particles, the PtNi/PTOC catalyst presents a high hydrogen generation rate (10,164.3 mL∙min−1∙g−1) and low activation energy (28.7 kJ∙mol−1). Furthermore, the robust porous structure of PTOC effectively suppresses the agglomeration issue; thus, the PtNi/PTOC catalyst retains 87.8% of the initial catalytic activity after eight cycles. These results indicate that the PtNi/PTOC catalyst has broad applications for the hydrolysis of borohydride.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35893518</pmid><doi>10.3390/nano12152550</doi><orcidid>https://orcid.org/0000-0003-4684-683X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2022-07, Vol.12 (15), p.2550
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_dedb3623d6304edfaab65718250c6def
source Publicly Available Content Database; PubMed Central
subjects Alanine
Bimetals
Borohydrides
Cages
Carbon
Catalysis
Catalysts
Catalytic activity
Energy
Ethanol
Hydrogen
hydrogen generation
Hydrogen production
Hydrolysis
Intermetallic compounds
L-Alanine
Morphology
Nanoparticles
Nitrates
Porous materials
porous titanium oxide cage
PtNi nanoparticles
sodium borohydride hydrolysis
Spectrum analysis
Synergistic effect
Titanium
Titanium oxide
Titanium oxides
title Bimetallic Pt-Ni Nanoparticles Confined in Porous Titanium Oxide Cage for Hydrogen Generation from NaBH4 Hydrolysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bimetallic%20Pt-Ni%20Nanoparticles%20Confined%20in%20Porous%20Titanium%20Oxide%20Cage%20for%20Hydrogen%20Generation%20from%20NaBH4%20Hydrolysis&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Yu,%20Yuqian&rft.date=2022-07-25&rft.volume=12&rft.issue=15&rft.spage=2550&rft.pages=2550-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano12152550&rft_dat=%3Cproquest_doaj_%3E2700740335%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-fe11b36387d2d9b43def9c5d771fa4edeac7991e862fe3bbf3c9c773385b93643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2700740335&rft_id=info:pmid/35893518&rfr_iscdi=true