Loading…
Using machine learning approaches to predict timely clinic attendance and the uptake of HIV/STI testing post clinic reminder messages
Timely and regular testing for HIV and sexually transmitted infections (STI) is important for controlling HIV and STI (HIV/STI) among men who have sex with men (MSM). We established multiple machine learning models (e.g., logistic regression, lasso regression, ridge regression, elastic net regressio...
Saved in:
Published in: | Scientific reports 2022-05, Vol.12 (1), p.8757-8757, Article 8757 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-a8d464f6b55023336127aefa385a77272975dd145b61f6cbf02e313469f3aa563 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-a8d464f6b55023336127aefa385a77272975dd145b61f6cbf02e313469f3aa563 |
container_end_page | 8757 |
container_issue | 1 |
container_start_page | 8757 |
container_title | Scientific reports |
container_volume | 12 |
creator | Xu, Xianglong Fairley, Christopher K. Chow, Eric P. F. Lee, David Aung, Ei T. Zhang, Lei Ong, Jason J. |
description | Timely and regular testing for HIV and sexually transmitted infections (STI) is important for controlling HIV and STI (HIV/STI) among men who have sex with men (MSM). We established multiple machine learning models (e.g., logistic regression, lasso regression, ridge regression, elastic net regression, support vector machine, k-nearest neighbour, naïve bayes, random forest, gradient boosting machine, XGBoost, and multi-layer perceptron) to predict timely (i.e., within 30 days) clinic attendance and HIV/STI testing uptake after receiving a reminder message via short message service (SMS) or email). Our study used 3044 clinic consultations among MSM within 12 months after receiving an email or SMS reminder at the Melbourne Sexual Health Centre between April 11, 2019, and April 30, 2020. About 29.5% [899/3044] were timely clinic attendance post reminder messages, and 84.6% [761/899] had HIV/STI testing. The XGBoost model performed best in predicting timely clinic attendance [mean [SD] AUC 62.8% (3.2%); F1 score 70.8% (1.2%)]. The elastic net regression model performed best in predicting HIV/STI testing within 30 days [AUC 82.7% (6.3%); F1 score 85.3% (1.8%)]. The machine learning approach is helpful in predicting timely clinic attendance and HIV/STI re-testing. Our predictive models could be incorporated into clinic websites to inform sexual health care or follow-up service. |
doi_str_mv | 10.1038/s41598-022-12033-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dedddf17705d4a708d23d8442625c7b4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dedddf17705d4a708d23d8442625c7b4</doaj_id><sourcerecordid>2669502072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-a8d464f6b55023336127aefa385a77272975dd145b61f6cbf02e313469f3aa563</originalsourceid><addsrcrecordid>eNp9Uk1v1DAQjRCIVqV_gAOyxIVLqL-dXJBQBXSlShxouVpee7LrJbGD7UXqD-B_423a0nLAsmRr5r3nmfFrmtcEvyeYdWeZE9F3Laa0JRQz1qpnzTHFXLSUUfr80f2oOc15h-sStOekf9kcMSFJZarj5vd19mGDJmO3PgAawaRwCJh5TrEGIaMS0ZzAeVtQ8ROMN8iOPniLTCkQnAkWkAkOlS2g_VzMD0BxQBer72ffrlaoQC4HwTnmck9MMPngIKEJcjYbyK-aF4MZM5zenSfN9edPV-cX7eXXL6vzj5etFRyX1nSOSz7ItRCYMsYkocrAYFgnjFJU0V4J5wgXa0kGadcDpsAI47IfmDFCspNmtei6aHZ6Tn4y6UZH4_VtIKaNNql4O4J24JwbiFJYOG4U7hxlruOcSiqsWvOq9WHRmvfrCZyFUJIZn4g-zQS_1Zv4S_eEdozhKvDuTiDFn_s6Jj35bGEcTYC4z5pK2dc-saIV-vYf6C7uU6ijOqA6UTc-VEQXlE0x5wTDQzEE64Np9GIaXb9e35pGq0p687iNB8q9RSqALYBcU2ED6e_b_5H9A-UizXE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2668568504</pqid></control><display><type>article</type><title>Using machine learning approaches to predict timely clinic attendance and the uptake of HIV/STI testing post clinic reminder messages</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Xu, Xianglong ; Fairley, Christopher K. ; Chow, Eric P. F. ; Lee, David ; Aung, Ei T. ; Zhang, Lei ; Ong, Jason J.</creator><creatorcontrib>Xu, Xianglong ; Fairley, Christopher K. ; Chow, Eric P. F. ; Lee, David ; Aung, Ei T. ; Zhang, Lei ; Ong, Jason J.</creatorcontrib><description>Timely and regular testing for HIV and sexually transmitted infections (STI) is important for controlling HIV and STI (HIV/STI) among men who have sex with men (MSM). We established multiple machine learning models (e.g., logistic regression, lasso regression, ridge regression, elastic net regression, support vector machine, k-nearest neighbour, naïve bayes, random forest, gradient boosting machine, XGBoost, and multi-layer perceptron) to predict timely (i.e., within 30 days) clinic attendance and HIV/STI testing uptake after receiving a reminder message via short message service (SMS) or email). Our study used 3044 clinic consultations among MSM within 12 months after receiving an email or SMS reminder at the Melbourne Sexual Health Centre between April 11, 2019, and April 30, 2020. About 29.5% [899/3044] were timely clinic attendance post reminder messages, and 84.6% [761/899] had HIV/STI testing. The XGBoost model performed best in predicting timely clinic attendance [mean [SD] AUC 62.8% (3.2%); F1 score 70.8% (1.2%)]. The elastic net regression model performed best in predicting HIV/STI testing within 30 days [AUC 82.7% (6.3%); F1 score 85.3% (1.8%)]. The machine learning approach is helpful in predicting timely clinic attendance and HIV/STI re-testing. Our predictive models could be incorporated into clinic websites to inform sexual health care or follow-up service.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-12033-7</identifier><identifier>PMID: 35610227</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/699/255 ; 692/700/228 ; 692/700/478 ; Bayes Theorem ; Bayesian analysis ; Health care ; HIV ; HIV Infections - diagnosis ; HIV Infections - epidemiology ; Homosexuality, Male ; Human immunodeficiency virus ; Humanities and Social Sciences ; Humans ; Learning algorithms ; Machine Learning ; Male ; Mass Screening ; multidisciplinary ; Prediction models ; Regression analysis ; Science ; Science (multidisciplinary) ; Sexual and Gender Minorities ; Sexual Behavior ; Sexual health ; Sexually transmitted diseases ; Sexually Transmitted Diseases - diagnosis ; STD</subject><ispartof>Scientific reports, 2022-05, Vol.12 (1), p.8757-8757, Article 8757</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-a8d464f6b55023336127aefa385a77272975dd145b61f6cbf02e313469f3aa563</citedby><cites>FETCH-LOGICAL-c540t-a8d464f6b55023336127aefa385a77272975dd145b61f6cbf02e313469f3aa563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2668568504/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2668568504?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35610227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xianglong</creatorcontrib><creatorcontrib>Fairley, Christopher K.</creatorcontrib><creatorcontrib>Chow, Eric P. F.</creatorcontrib><creatorcontrib>Lee, David</creatorcontrib><creatorcontrib>Aung, Ei T.</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Ong, Jason J.</creatorcontrib><title>Using machine learning approaches to predict timely clinic attendance and the uptake of HIV/STI testing post clinic reminder messages</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Timely and regular testing for HIV and sexually transmitted infections (STI) is important for controlling HIV and STI (HIV/STI) among men who have sex with men (MSM). We established multiple machine learning models (e.g., logistic regression, lasso regression, ridge regression, elastic net regression, support vector machine, k-nearest neighbour, naïve bayes, random forest, gradient boosting machine, XGBoost, and multi-layer perceptron) to predict timely (i.e., within 30 days) clinic attendance and HIV/STI testing uptake after receiving a reminder message via short message service (SMS) or email). Our study used 3044 clinic consultations among MSM within 12 months after receiving an email or SMS reminder at the Melbourne Sexual Health Centre between April 11, 2019, and April 30, 2020. About 29.5% [899/3044] were timely clinic attendance post reminder messages, and 84.6% [761/899] had HIV/STI testing. The XGBoost model performed best in predicting timely clinic attendance [mean [SD] AUC 62.8% (3.2%); F1 score 70.8% (1.2%)]. The elastic net regression model performed best in predicting HIV/STI testing within 30 days [AUC 82.7% (6.3%); F1 score 85.3% (1.8%)]. The machine learning approach is helpful in predicting timely clinic attendance and HIV/STI re-testing. Our predictive models could be incorporated into clinic websites to inform sexual health care or follow-up service.</description><subject>692/699/255</subject><subject>692/700/228</subject><subject>692/700/478</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Health care</subject><subject>HIV</subject><subject>HIV Infections - diagnosis</subject><subject>HIV Infections - epidemiology</subject><subject>Homosexuality, Male</subject><subject>Human immunodeficiency virus</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Mass Screening</subject><subject>multidisciplinary</subject><subject>Prediction models</subject><subject>Regression analysis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sexual and Gender Minorities</subject><subject>Sexual Behavior</subject><subject>Sexual health</subject><subject>Sexually transmitted diseases</subject><subject>Sexually Transmitted Diseases - diagnosis</subject><subject>STD</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1v1DAQjRCIVqV_gAOyxIVLqL-dXJBQBXSlShxouVpee7LrJbGD7UXqD-B_423a0nLAsmRr5r3nmfFrmtcEvyeYdWeZE9F3Laa0JRQz1qpnzTHFXLSUUfr80f2oOc15h-sStOekf9kcMSFJZarj5vd19mGDJmO3PgAawaRwCJh5TrEGIaMS0ZzAeVtQ8ROMN8iOPniLTCkQnAkWkAkOlS2g_VzMD0BxQBer72ffrlaoQC4HwTnmck9MMPngIKEJcjYbyK-aF4MZM5zenSfN9edPV-cX7eXXL6vzj5etFRyX1nSOSz7ItRCYMsYkocrAYFgnjFJU0V4J5wgXa0kGadcDpsAI47IfmDFCspNmtei6aHZ6Tn4y6UZH4_VtIKaNNql4O4J24JwbiFJYOG4U7hxlruOcSiqsWvOq9WHRmvfrCZyFUJIZn4g-zQS_1Zv4S_eEdozhKvDuTiDFn_s6Jj35bGEcTYC4z5pK2dc-saIV-vYf6C7uU6ijOqA6UTc-VEQXlE0x5wTDQzEE64Np9GIaXb9e35pGq0p687iNB8q9RSqALYBcU2ED6e_b_5H9A-UizXE</recordid><startdate>20220524</startdate><enddate>20220524</enddate><creator>Xu, Xianglong</creator><creator>Fairley, Christopher K.</creator><creator>Chow, Eric P. F.</creator><creator>Lee, David</creator><creator>Aung, Ei T.</creator><creator>Zhang, Lei</creator><creator>Ong, Jason J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220524</creationdate><title>Using machine learning approaches to predict timely clinic attendance and the uptake of HIV/STI testing post clinic reminder messages</title><author>Xu, Xianglong ; Fairley, Christopher K. ; Chow, Eric P. F. ; Lee, David ; Aung, Ei T. ; Zhang, Lei ; Ong, Jason J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-a8d464f6b55023336127aefa385a77272975dd145b61f6cbf02e313469f3aa563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>692/699/255</topic><topic>692/700/228</topic><topic>692/700/478</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Health care</topic><topic>HIV</topic><topic>HIV Infections - diagnosis</topic><topic>HIV Infections - epidemiology</topic><topic>Homosexuality, Male</topic><topic>Human immunodeficiency virus</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Mass Screening</topic><topic>multidisciplinary</topic><topic>Prediction models</topic><topic>Regression analysis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sexual and Gender Minorities</topic><topic>Sexual Behavior</topic><topic>Sexual health</topic><topic>Sexually transmitted diseases</topic><topic>Sexually Transmitted Diseases - diagnosis</topic><topic>STD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xianglong</creatorcontrib><creatorcontrib>Fairley, Christopher K.</creatorcontrib><creatorcontrib>Chow, Eric P. F.</creatorcontrib><creatorcontrib>Lee, David</creatorcontrib><creatorcontrib>Aung, Ei T.</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Ong, Jason J.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xianglong</au><au>Fairley, Christopher K.</au><au>Chow, Eric P. F.</au><au>Lee, David</au><au>Aung, Ei T.</au><au>Zhang, Lei</au><au>Ong, Jason J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using machine learning approaches to predict timely clinic attendance and the uptake of HIV/STI testing post clinic reminder messages</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2022-05-24</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>8757</spage><epage>8757</epage><pages>8757-8757</pages><artnum>8757</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Timely and regular testing for HIV and sexually transmitted infections (STI) is important for controlling HIV and STI (HIV/STI) among men who have sex with men (MSM). We established multiple machine learning models (e.g., logistic regression, lasso regression, ridge regression, elastic net regression, support vector machine, k-nearest neighbour, naïve bayes, random forest, gradient boosting machine, XGBoost, and multi-layer perceptron) to predict timely (i.e., within 30 days) clinic attendance and HIV/STI testing uptake after receiving a reminder message via short message service (SMS) or email). Our study used 3044 clinic consultations among MSM within 12 months after receiving an email or SMS reminder at the Melbourne Sexual Health Centre between April 11, 2019, and April 30, 2020. About 29.5% [899/3044] were timely clinic attendance post reminder messages, and 84.6% [761/899] had HIV/STI testing. The XGBoost model performed best in predicting timely clinic attendance [mean [SD] AUC 62.8% (3.2%); F1 score 70.8% (1.2%)]. The elastic net regression model performed best in predicting HIV/STI testing within 30 days [AUC 82.7% (6.3%); F1 score 85.3% (1.8%)]. The machine learning approach is helpful in predicting timely clinic attendance and HIV/STI re-testing. Our predictive models could be incorporated into clinic websites to inform sexual health care or follow-up service.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35610227</pmid><doi>10.1038/s41598-022-12033-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2022-05, Vol.12 (1), p.8757-8757, Article 8757 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_dedddf17705d4a708d23d8442625c7b4 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 692/699/255 692/700/228 692/700/478 Bayes Theorem Bayesian analysis Health care HIV HIV Infections - diagnosis HIV Infections - epidemiology Homosexuality, Male Human immunodeficiency virus Humanities and Social Sciences Humans Learning algorithms Machine Learning Male Mass Screening multidisciplinary Prediction models Regression analysis Science Science (multidisciplinary) Sexual and Gender Minorities Sexual Behavior Sexual health Sexually transmitted diseases Sexually Transmitted Diseases - diagnosis STD |
title | Using machine learning approaches to predict timely clinic attendance and the uptake of HIV/STI testing post clinic reminder messages |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20machine%20learning%20approaches%20to%20predict%20timely%20clinic%20attendance%20and%20the%20uptake%20of%20HIV/STI%20testing%20post%20clinic%20reminder%20messages&rft.jtitle=Scientific%20reports&rft.au=Xu,%20Xianglong&rft.date=2022-05-24&rft.volume=12&rft.issue=1&rft.spage=8757&rft.epage=8757&rft.pages=8757-8757&rft.artnum=8757&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-12033-7&rft_dat=%3Cproquest_doaj_%3E2669502072%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-a8d464f6b55023336127aefa385a77272975dd145b61f6cbf02e313469f3aa563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2668568504&rft_id=info:pmid/35610227&rfr_iscdi=true |