Loading…

Using machine learning approaches to predict timely clinic attendance and the uptake of HIV/STI testing post clinic reminder messages

Timely and regular testing for HIV and sexually transmitted infections (STI) is important for controlling HIV and STI (HIV/STI) among men who have sex with men (MSM). We established multiple machine learning models (e.g., logistic regression, lasso regression, ridge regression, elastic net regressio...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-05, Vol.12 (1), p.8757-8757, Article 8757
Main Authors: Xu, Xianglong, Fairley, Christopher K., Chow, Eric P. F., Lee, David, Aung, Ei T., Zhang, Lei, Ong, Jason J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-a8d464f6b55023336127aefa385a77272975dd145b61f6cbf02e313469f3aa563
cites cdi_FETCH-LOGICAL-c540t-a8d464f6b55023336127aefa385a77272975dd145b61f6cbf02e313469f3aa563
container_end_page 8757
container_issue 1
container_start_page 8757
container_title Scientific reports
container_volume 12
creator Xu, Xianglong
Fairley, Christopher K.
Chow, Eric P. F.
Lee, David
Aung, Ei T.
Zhang, Lei
Ong, Jason J.
description Timely and regular testing for HIV and sexually transmitted infections (STI) is important for controlling HIV and STI (HIV/STI) among men who have sex with men (MSM). We established multiple machine learning models (e.g., logistic regression, lasso regression, ridge regression, elastic net regression, support vector machine, k-nearest neighbour, naïve bayes, random forest, gradient boosting machine, XGBoost, and multi-layer perceptron) to predict timely (i.e., within 30 days) clinic attendance and HIV/STI testing uptake after receiving a reminder message via short message service (SMS) or email). Our study used 3044 clinic consultations among MSM within 12 months after receiving an email or SMS reminder at the Melbourne Sexual Health Centre between April 11, 2019, and April 30, 2020. About 29.5% [899/3044] were timely clinic attendance post reminder messages, and 84.6% [761/899] had HIV/STI testing. The XGBoost model performed best in predicting timely clinic attendance [mean [SD] AUC 62.8% (3.2%); F1 score 70.8% (1.2%)]. The elastic net regression model performed best in predicting HIV/STI testing within 30 days [AUC 82.7% (6.3%); F1 score 85.3% (1.8%)]. The machine learning approach is helpful in predicting timely clinic attendance and HIV/STI re-testing. Our predictive models could be incorporated into clinic websites to inform sexual health care or follow-up service.
doi_str_mv 10.1038/s41598-022-12033-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dedddf17705d4a708d23d8442625c7b4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dedddf17705d4a708d23d8442625c7b4</doaj_id><sourcerecordid>2669502072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-a8d464f6b55023336127aefa385a77272975dd145b61f6cbf02e313469f3aa563</originalsourceid><addsrcrecordid>eNp9Uk1v1DAQjRCIVqV_gAOyxIVLqL-dXJBQBXSlShxouVpee7LrJbGD7UXqD-B_423a0nLAsmRr5r3nmfFrmtcEvyeYdWeZE9F3Laa0JRQz1qpnzTHFXLSUUfr80f2oOc15h-sStOekf9kcMSFJZarj5vd19mGDJmO3PgAawaRwCJh5TrEGIaMS0ZzAeVtQ8ROMN8iOPniLTCkQnAkWkAkOlS2g_VzMD0BxQBer72ffrlaoQC4HwTnmck9MMPngIKEJcjYbyK-aF4MZM5zenSfN9edPV-cX7eXXL6vzj5etFRyX1nSOSz7ItRCYMsYkocrAYFgnjFJU0V4J5wgXa0kGadcDpsAI47IfmDFCspNmtei6aHZ6Tn4y6UZH4_VtIKaNNql4O4J24JwbiFJYOG4U7hxlruOcSiqsWvOq9WHRmvfrCZyFUJIZn4g-zQS_1Zv4S_eEdozhKvDuTiDFn_s6Jj35bGEcTYC4z5pK2dc-saIV-vYf6C7uU6ijOqA6UTc-VEQXlE0x5wTDQzEE64Np9GIaXb9e35pGq0p687iNB8q9RSqALYBcU2ED6e_b_5H9A-UizXE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2668568504</pqid></control><display><type>article</type><title>Using machine learning approaches to predict timely clinic attendance and the uptake of HIV/STI testing post clinic reminder messages</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Xu, Xianglong ; Fairley, Christopher K. ; Chow, Eric P. F. ; Lee, David ; Aung, Ei T. ; Zhang, Lei ; Ong, Jason J.</creator><creatorcontrib>Xu, Xianglong ; Fairley, Christopher K. ; Chow, Eric P. F. ; Lee, David ; Aung, Ei T. ; Zhang, Lei ; Ong, Jason J.</creatorcontrib><description>Timely and regular testing for HIV and sexually transmitted infections (STI) is important for controlling HIV and STI (HIV/STI) among men who have sex with men (MSM). We established multiple machine learning models (e.g., logistic regression, lasso regression, ridge regression, elastic net regression, support vector machine, k-nearest neighbour, naïve bayes, random forest, gradient boosting machine, XGBoost, and multi-layer perceptron) to predict timely (i.e., within 30 days) clinic attendance and HIV/STI testing uptake after receiving a reminder message via short message service (SMS) or email). Our study used 3044 clinic consultations among MSM within 12 months after receiving an email or SMS reminder at the Melbourne Sexual Health Centre between April 11, 2019, and April 30, 2020. About 29.5% [899/3044] were timely clinic attendance post reminder messages, and 84.6% [761/899] had HIV/STI testing. The XGBoost model performed best in predicting timely clinic attendance [mean [SD] AUC 62.8% (3.2%); F1 score 70.8% (1.2%)]. The elastic net regression model performed best in predicting HIV/STI testing within 30 days [AUC 82.7% (6.3%); F1 score 85.3% (1.8%)]. The machine learning approach is helpful in predicting timely clinic attendance and HIV/STI re-testing. Our predictive models could be incorporated into clinic websites to inform sexual health care or follow-up service.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-12033-7</identifier><identifier>PMID: 35610227</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/699/255 ; 692/700/228 ; 692/700/478 ; Bayes Theorem ; Bayesian analysis ; Health care ; HIV ; HIV Infections - diagnosis ; HIV Infections - epidemiology ; Homosexuality, Male ; Human immunodeficiency virus ; Humanities and Social Sciences ; Humans ; Learning algorithms ; Machine Learning ; Male ; Mass Screening ; multidisciplinary ; Prediction models ; Regression analysis ; Science ; Science (multidisciplinary) ; Sexual and Gender Minorities ; Sexual Behavior ; Sexual health ; Sexually transmitted diseases ; Sexually Transmitted Diseases - diagnosis ; STD</subject><ispartof>Scientific reports, 2022-05, Vol.12 (1), p.8757-8757, Article 8757</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-a8d464f6b55023336127aefa385a77272975dd145b61f6cbf02e313469f3aa563</citedby><cites>FETCH-LOGICAL-c540t-a8d464f6b55023336127aefa385a77272975dd145b61f6cbf02e313469f3aa563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2668568504/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2668568504?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35610227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xianglong</creatorcontrib><creatorcontrib>Fairley, Christopher K.</creatorcontrib><creatorcontrib>Chow, Eric P. F.</creatorcontrib><creatorcontrib>Lee, David</creatorcontrib><creatorcontrib>Aung, Ei T.</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Ong, Jason J.</creatorcontrib><title>Using machine learning approaches to predict timely clinic attendance and the uptake of HIV/STI testing post clinic reminder messages</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Timely and regular testing for HIV and sexually transmitted infections (STI) is important for controlling HIV and STI (HIV/STI) among men who have sex with men (MSM). We established multiple machine learning models (e.g., logistic regression, lasso regression, ridge regression, elastic net regression, support vector machine, k-nearest neighbour, naïve bayes, random forest, gradient boosting machine, XGBoost, and multi-layer perceptron) to predict timely (i.e., within 30 days) clinic attendance and HIV/STI testing uptake after receiving a reminder message via short message service (SMS) or email). Our study used 3044 clinic consultations among MSM within 12 months after receiving an email or SMS reminder at the Melbourne Sexual Health Centre between April 11, 2019, and April 30, 2020. About 29.5% [899/3044] were timely clinic attendance post reminder messages, and 84.6% [761/899] had HIV/STI testing. The XGBoost model performed best in predicting timely clinic attendance [mean [SD] AUC 62.8% (3.2%); F1 score 70.8% (1.2%)]. The elastic net regression model performed best in predicting HIV/STI testing within 30 days [AUC 82.7% (6.3%); F1 score 85.3% (1.8%)]. The machine learning approach is helpful in predicting timely clinic attendance and HIV/STI re-testing. Our predictive models could be incorporated into clinic websites to inform sexual health care or follow-up service.</description><subject>692/699/255</subject><subject>692/700/228</subject><subject>692/700/478</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Health care</subject><subject>HIV</subject><subject>HIV Infections - diagnosis</subject><subject>HIV Infections - epidemiology</subject><subject>Homosexuality, Male</subject><subject>Human immunodeficiency virus</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Mass Screening</subject><subject>multidisciplinary</subject><subject>Prediction models</subject><subject>Regression analysis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sexual and Gender Minorities</subject><subject>Sexual Behavior</subject><subject>Sexual health</subject><subject>Sexually transmitted diseases</subject><subject>Sexually Transmitted Diseases - diagnosis</subject><subject>STD</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1v1DAQjRCIVqV_gAOyxIVLqL-dXJBQBXSlShxouVpee7LrJbGD7UXqD-B_423a0nLAsmRr5r3nmfFrmtcEvyeYdWeZE9F3Laa0JRQz1qpnzTHFXLSUUfr80f2oOc15h-sStOekf9kcMSFJZarj5vd19mGDJmO3PgAawaRwCJh5TrEGIaMS0ZzAeVtQ8ROMN8iOPniLTCkQnAkWkAkOlS2g_VzMD0BxQBer72ffrlaoQC4HwTnmck9MMPngIKEJcjYbyK-aF4MZM5zenSfN9edPV-cX7eXXL6vzj5etFRyX1nSOSz7ItRCYMsYkocrAYFgnjFJU0V4J5wgXa0kGadcDpsAI47IfmDFCspNmtei6aHZ6Tn4y6UZH4_VtIKaNNql4O4J24JwbiFJYOG4U7hxlruOcSiqsWvOq9WHRmvfrCZyFUJIZn4g-zQS_1Zv4S_eEdozhKvDuTiDFn_s6Jj35bGEcTYC4z5pK2dc-saIV-vYf6C7uU6ijOqA6UTc-VEQXlE0x5wTDQzEE64Np9GIaXb9e35pGq0p687iNB8q9RSqALYBcU2ED6e_b_5H9A-UizXE</recordid><startdate>20220524</startdate><enddate>20220524</enddate><creator>Xu, Xianglong</creator><creator>Fairley, Christopher K.</creator><creator>Chow, Eric P. F.</creator><creator>Lee, David</creator><creator>Aung, Ei T.</creator><creator>Zhang, Lei</creator><creator>Ong, Jason J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220524</creationdate><title>Using machine learning approaches to predict timely clinic attendance and the uptake of HIV/STI testing post clinic reminder messages</title><author>Xu, Xianglong ; Fairley, Christopher K. ; Chow, Eric P. F. ; Lee, David ; Aung, Ei T. ; Zhang, Lei ; Ong, Jason J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-a8d464f6b55023336127aefa385a77272975dd145b61f6cbf02e313469f3aa563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>692/699/255</topic><topic>692/700/228</topic><topic>692/700/478</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Health care</topic><topic>HIV</topic><topic>HIV Infections - diagnosis</topic><topic>HIV Infections - epidemiology</topic><topic>Homosexuality, Male</topic><topic>Human immunodeficiency virus</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Mass Screening</topic><topic>multidisciplinary</topic><topic>Prediction models</topic><topic>Regression analysis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sexual and Gender Minorities</topic><topic>Sexual Behavior</topic><topic>Sexual health</topic><topic>Sexually transmitted diseases</topic><topic>Sexually Transmitted Diseases - diagnosis</topic><topic>STD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xianglong</creatorcontrib><creatorcontrib>Fairley, Christopher K.</creatorcontrib><creatorcontrib>Chow, Eric P. F.</creatorcontrib><creatorcontrib>Lee, David</creatorcontrib><creatorcontrib>Aung, Ei T.</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Ong, Jason J.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xianglong</au><au>Fairley, Christopher K.</au><au>Chow, Eric P. F.</au><au>Lee, David</au><au>Aung, Ei T.</au><au>Zhang, Lei</au><au>Ong, Jason J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using machine learning approaches to predict timely clinic attendance and the uptake of HIV/STI testing post clinic reminder messages</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2022-05-24</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>8757</spage><epage>8757</epage><pages>8757-8757</pages><artnum>8757</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Timely and regular testing for HIV and sexually transmitted infections (STI) is important for controlling HIV and STI (HIV/STI) among men who have sex with men (MSM). We established multiple machine learning models (e.g., logistic regression, lasso regression, ridge regression, elastic net regression, support vector machine, k-nearest neighbour, naïve bayes, random forest, gradient boosting machine, XGBoost, and multi-layer perceptron) to predict timely (i.e., within 30 days) clinic attendance and HIV/STI testing uptake after receiving a reminder message via short message service (SMS) or email). Our study used 3044 clinic consultations among MSM within 12 months after receiving an email or SMS reminder at the Melbourne Sexual Health Centre between April 11, 2019, and April 30, 2020. About 29.5% [899/3044] were timely clinic attendance post reminder messages, and 84.6% [761/899] had HIV/STI testing. The XGBoost model performed best in predicting timely clinic attendance [mean [SD] AUC 62.8% (3.2%); F1 score 70.8% (1.2%)]. The elastic net regression model performed best in predicting HIV/STI testing within 30 days [AUC 82.7% (6.3%); F1 score 85.3% (1.8%)]. The machine learning approach is helpful in predicting timely clinic attendance and HIV/STI re-testing. Our predictive models could be incorporated into clinic websites to inform sexual health care or follow-up service.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35610227</pmid><doi>10.1038/s41598-022-12033-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2022-05, Vol.12 (1), p.8757-8757, Article 8757
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_dedddf17705d4a708d23d8442625c7b4
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 692/699/255
692/700/228
692/700/478
Bayes Theorem
Bayesian analysis
Health care
HIV
HIV Infections - diagnosis
HIV Infections - epidemiology
Homosexuality, Male
Human immunodeficiency virus
Humanities and Social Sciences
Humans
Learning algorithms
Machine Learning
Male
Mass Screening
multidisciplinary
Prediction models
Regression analysis
Science
Science (multidisciplinary)
Sexual and Gender Minorities
Sexual Behavior
Sexual health
Sexually transmitted diseases
Sexually Transmitted Diseases - diagnosis
STD
title Using machine learning approaches to predict timely clinic attendance and the uptake of HIV/STI testing post clinic reminder messages
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20machine%20learning%20approaches%20to%20predict%20timely%20clinic%20attendance%20and%20the%20uptake%20of%20HIV/STI%20testing%20post%20clinic%20reminder%20messages&rft.jtitle=Scientific%20reports&rft.au=Xu,%20Xianglong&rft.date=2022-05-24&rft.volume=12&rft.issue=1&rft.spage=8757&rft.epage=8757&rft.pages=8757-8757&rft.artnum=8757&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-12033-7&rft_dat=%3Cproquest_doaj_%3E2669502072%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-a8d464f6b55023336127aefa385a77272975dd145b61f6cbf02e313469f3aa563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2668568504&rft_id=info:pmid/35610227&rfr_iscdi=true