Loading…

Using visual attention estimation on videos for automated prediction of autism spectrum disorder and symptom severity in preschool children

Atypical visual attention in individuals with autism spectrum disorders (ASD) has been utilised as a unique diagnosis criterion in previous research. This paper presents a novel approach to the automatic and quantitative screening of ASD as well as symptom severity prediction in preschool children....

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2024-01, Vol.19 (2), p.e0282818
Main Authors: Ryan Anthony J de Belen, Valsamma Eapen, Tomasz Bednarz, Arcot Sowmya
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 2
container_start_page e0282818
container_title PloS one
container_volume 19
creator Ryan Anthony J de Belen
Valsamma Eapen
Tomasz Bednarz
Arcot Sowmya
description Atypical visual attention in individuals with autism spectrum disorders (ASD) has been utilised as a unique diagnosis criterion in previous research. This paper presents a novel approach to the automatic and quantitative screening of ASD as well as symptom severity prediction in preschool children. We develop a novel computational pipeline that extracts learned features from a dynamic visual stimulus to classify ASD children and predict the level of ASD-related symptoms. Experimental results demonstrate promising performance that is superior to using handcrafted features and machine learning algorithms, in terms of evaluation metrics used in diagnostic tests. Using a leave-one-out cross-validation approach, we obtained an accuracy of 94.59%, a sensitivity of 100%, a specificity of 76.47% and an area under the receiver operating characteristic curve (AUC) of 96% for ASD classification. In addition, we obtained an accuracy of 94.74%, a sensitivity of 87.50%, a specificity of 100% and an AUC of 99% for ASD symptom severity prediction.
doi_str_mv 10.1371/journal.pone.0282818
format article
fullrecord <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dedfa03db32244dfa15cf3b96d9c6124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dedfa03db32244dfa15cf3b96d9c6124</doaj_id><sourcerecordid>oai_doaj_org_article_dedfa03db32244dfa15cf3b96d9c6124</sourcerecordid><originalsourceid>FETCH-doaj_primary_oai_doaj_org_article_dedfa03db32244dfa15cf3b96d9c61243</originalsourceid><addsrcrecordid>eNqtjk1OwzAQhS0kJMrPDVj4Ag3-SUOyRiDYwzpy7Uk7kWNHHidSz8ClcQtHQBrpPb2Z72kYe5SikvpZPo1xScH4ao4BKqFa1cr2im1kp9W2UULfsFuiUYidbptmw76_CMOBr0iL8dzkDCFjDBwo42QutsyKDiLxISZulhzLAhyfEzi0vyfDOUeaOM1gc1om7pBiclCA4DidprlgnGCFhPnEMZxxsscYPbdH9C5BuGfXg_EED396xz7eXj9f3rcumrGfU3konfposL8EMR16kzJaD70DNxih3V4rVdfFy50d9L5rXGcbqWr9n10_T2V5jw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using visual attention estimation on videos for automated prediction of autism spectrum disorder and symptom severity in preschool children</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Ryan Anthony J de Belen ; Valsamma Eapen ; Tomasz Bednarz ; Arcot Sowmya</creator><creatorcontrib>Ryan Anthony J de Belen ; Valsamma Eapen ; Tomasz Bednarz ; Arcot Sowmya</creatorcontrib><description>Atypical visual attention in individuals with autism spectrum disorders (ASD) has been utilised as a unique diagnosis criterion in previous research. This paper presents a novel approach to the automatic and quantitative screening of ASD as well as symptom severity prediction in preschool children. We develop a novel computational pipeline that extracts learned features from a dynamic visual stimulus to classify ASD children and predict the level of ASD-related symptoms. Experimental results demonstrate promising performance that is superior to using handcrafted features and machine learning algorithms, in terms of evaluation metrics used in diagnostic tests. Using a leave-one-out cross-validation approach, we obtained an accuracy of 94.59%, a sensitivity of 100%, a specificity of 76.47% and an area under the receiver operating characteristic curve (AUC) of 96% for ASD classification. In addition, we obtained an accuracy of 94.74%, a sensitivity of 87.50%, a specificity of 100% and an AUC of 99% for ASD symptom severity prediction.</description><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0282818</identifier><language>eng</language><publisher>Public Library of Science (PLoS)</publisher><ispartof>PloS one, 2024-01, Vol.19 (2), p.e0282818</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ryan Anthony J de Belen</creatorcontrib><creatorcontrib>Valsamma Eapen</creatorcontrib><creatorcontrib>Tomasz Bednarz</creatorcontrib><creatorcontrib>Arcot Sowmya</creatorcontrib><title>Using visual attention estimation on videos for automated prediction of autism spectrum disorder and symptom severity in preschool children</title><title>PloS one</title><description>Atypical visual attention in individuals with autism spectrum disorders (ASD) has been utilised as a unique diagnosis criterion in previous research. This paper presents a novel approach to the automatic and quantitative screening of ASD as well as symptom severity prediction in preschool children. We develop a novel computational pipeline that extracts learned features from a dynamic visual stimulus to classify ASD children and predict the level of ASD-related symptoms. Experimental results demonstrate promising performance that is superior to using handcrafted features and machine learning algorithms, in terms of evaluation metrics used in diagnostic tests. Using a leave-one-out cross-validation approach, we obtained an accuracy of 94.59%, a sensitivity of 100%, a specificity of 76.47% and an area under the receiver operating characteristic curve (AUC) of 96% for ASD classification. In addition, we obtained an accuracy of 94.74%, a sensitivity of 87.50%, a specificity of 100% and an AUC of 99% for ASD symptom severity prediction.</description><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqtjk1OwzAQhS0kJMrPDVj4Ag3-SUOyRiDYwzpy7Uk7kWNHHidSz8ClcQtHQBrpPb2Z72kYe5SikvpZPo1xScH4ao4BKqFa1cr2im1kp9W2UULfsFuiUYidbptmw76_CMOBr0iL8dzkDCFjDBwo42QutsyKDiLxISZulhzLAhyfEzi0vyfDOUeaOM1gc1om7pBiclCA4DidprlgnGCFhPnEMZxxsscYPbdH9C5BuGfXg_EED396xz7eXj9f3rcumrGfU3konfposL8EMR16kzJaD70DNxih3V4rVdfFy50d9L5rXGcbqWr9n10_T2V5jw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Ryan Anthony J de Belen</creator><creator>Valsamma Eapen</creator><creator>Tomasz Bednarz</creator><creator>Arcot Sowmya</creator><general>Public Library of Science (PLoS)</general><scope>DOA</scope></search><sort><creationdate>20240101</creationdate><title>Using visual attention estimation on videos for automated prediction of autism spectrum disorder and symptom severity in preschool children</title><author>Ryan Anthony J de Belen ; Valsamma Eapen ; Tomasz Bednarz ; Arcot Sowmya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-doaj_primary_oai_doaj_org_article_dedfa03db32244dfa15cf3b96d9c61243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryan Anthony J de Belen</creatorcontrib><creatorcontrib>Valsamma Eapen</creatorcontrib><creatorcontrib>Tomasz Bednarz</creatorcontrib><creatorcontrib>Arcot Sowmya</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryan Anthony J de Belen</au><au>Valsamma Eapen</au><au>Tomasz Bednarz</au><au>Arcot Sowmya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using visual attention estimation on videos for automated prediction of autism spectrum disorder and symptom severity in preschool children</atitle><jtitle>PloS one</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>19</volume><issue>2</issue><spage>e0282818</spage><pages>e0282818-</pages><eissn>1932-6203</eissn><abstract>Atypical visual attention in individuals with autism spectrum disorders (ASD) has been utilised as a unique diagnosis criterion in previous research. This paper presents a novel approach to the automatic and quantitative screening of ASD as well as symptom severity prediction in preschool children. We develop a novel computational pipeline that extracts learned features from a dynamic visual stimulus to classify ASD children and predict the level of ASD-related symptoms. Experimental results demonstrate promising performance that is superior to using handcrafted features and machine learning algorithms, in terms of evaluation metrics used in diagnostic tests. Using a leave-one-out cross-validation approach, we obtained an accuracy of 94.59%, a sensitivity of 100%, a specificity of 76.47% and an area under the receiver operating characteristic curve (AUC) of 96% for ASD classification. In addition, we obtained an accuracy of 94.74%, a sensitivity of 87.50%, a specificity of 100% and an AUC of 99% for ASD symptom severity prediction.</abstract><pub>Public Library of Science (PLoS)</pub><doi>10.1371/journal.pone.0282818</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1932-6203
ispartof PloS one, 2024-01, Vol.19 (2), p.e0282818
issn 1932-6203
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_dedfa03db32244dfa15cf3b96d9c6124
source PubMed (Medline); Publicly Available Content (ProQuest)
title Using visual attention estimation on videos for automated prediction of autism spectrum disorder and symptom severity in preschool children
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20visual%20attention%20estimation%20on%20videos%20for%20automated%20prediction%20of%20autism%20spectrum%20disorder%20and%20symptom%20severity%20in%20preschool%20children&rft.jtitle=PloS%20one&rft.au=Ryan%20Anthony%20J%20de%20Belen&rft.date=2024-01-01&rft.volume=19&rft.issue=2&rft.spage=e0282818&rft.pages=e0282818-&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0282818&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_dedfa03db32244dfa15cf3b96d9c6124%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-doaj_primary_oai_doaj_org_article_dedfa03db32244dfa15cf3b96d9c61243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true