Loading…
Chessboard and Chess Piece Recognition With the Support of Neural Networks
Chessboard and chess piece recognition is a computer vision problem that has not yet been efficiently solved. Digitization of a chess game state from a picture of a chessboard is a task typically performed by humans or with the aid of specialized chessboards and pieces. However, those solutions are...
Saved in:
Published in: | Foundations of computing and decision sciences 2020-12, Vol.45 (4), p.257-280 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chessboard and chess piece recognition is a computer vision problem that has not yet been efficiently solved. Digitization of a chess game state from a picture of a chessboard is a task typically performed by humans or with the aid of specialized chessboards and pieces. However, those solutions are neither easy nor convenient. To solve this problem, we propose a novel algorithm for digitizing chessboard configurations.
We designed a method of chessboard recognition and pieces detection that is resistant to lighting conditions and the angle at which images are captured, and works correctly with numerous chessboard styles. Detecting the board and recognizing chess pieces are crucial steps of board state digitization.
The algorithm achieves 95% accuracy (compared to 60% for the best alternative) for positioning the chessboard in an image, and almost 95% for chess pieces recognition. Furthermore, the sub-process of detecting straight lines and finding lattice points performs extraordinarily well, achieving over 99.5% accuracy (compared to the 74% for the best alternative). |
---|---|
ISSN: | 2300-3405 2300-3405 |
DOI: | 10.2478/fcds-2020-0014 |