Loading…
Big data in breast cancer: Towards precision treatment
Breast cancer is the most prevalent and deadliest cancer among women globally, representing a major threat to public health. In response, the World Health Organization has established the Global Breast Cancer Initiative framework to reduce breast cancer mortality through global collaboration. The in...
Saved in:
Published in: | Digital health 2024-01, Vol.10, p.20552076241293695 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c348t-19c271242b7bba50ba09c559e0d3aab59f4f4c117ac662a17641e13b61e4d94c3 |
container_end_page | |
container_issue | |
container_start_page | 20552076241293695 |
container_title | Digital health |
container_volume | 10 |
creator | Zhang, Hao Hussin, Hasmah Hoh, Chee-Choong Cheong, Shun-Hui Lee, Wei-Kang Yahaya, Badrul Hisham |
description | Breast cancer is the most prevalent and deadliest cancer among women globally, representing a major threat to public health. In response, the World Health Organization has established the Global Breast Cancer Initiative framework to reduce breast cancer mortality through global collaboration. The integration of big data analytics (BDA) and precision medicine has transformed our understanding of breast cancer's biological traits and treatment responses. By harnessing large-scale datasets - encompassing genetic, clinical, and environmental data - BDA has enhanced strategies for breast cancer prevention, diagnosis, and treatment, driving the advancement of precision oncology and personalised care. Despite the increasing importance of big data in breast cancer research, comprehensive studies remain sparse, underscoring the need for more systematic investigation. This review evaluates the contributions of big data to breast cancer precision medicine while addressing the associated opportunities and challenges. Through the application of big data, we aim to deepen insights into breast cancer pathogenesis, optimise therapeutic approaches, improve patient outcomes, and ultimately contribute to better survival rates and quality of life. This review seeks to provide a foundation for future research in breast cancer prevention, treatment, and management. |
doi_str_mv | 10.1177/20552076241293695 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_df009694b5124cb3a895388ea6e683bb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_df009694b5124cb3a895388ea6e683bb</doaj_id><sourcerecordid>3124690182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-19c271242b7bba50ba09c559e0d3aab59f4f4c117ac662a17641e13b61e4d94c3</originalsourceid><addsrcrecordid>eNplkUtLBDEQhIMoKuoP8CJz9LKazmsmXkTFFwhe9Bw6mcwamZ2syazivzfrqiieEirVX6UpQvaBHgHU9TGjUjJaKyaAaa60XCPbS22yFNd_3bfIXs7PlFKoea1BbZItriVlomHbRJ2HadXiiFUYKps85rFyODifTqqH-IapzdU8eRdyiEM1FsM488O4SzY67LPf-zp3yOPV5cPFzeTu_vr24uxu4rhoxglox2pggtnaWpTUItVOSu1pyxGt1J3ohCvroFOKIdRKgAduFXjRauH4DrldcduIz2aewgzTu4kYzKcQ09RgGoPrvWk7SrXSwsoS6CzHRkveNB6VVw23trBOV6z5ws5868oaCfs_0L8vQ3gy0_hqACRXCkQhHH4RUnxZ-DyaWcjO9z0OPi6y4SVZaQoNK1ZYWV2KOSff_eQANcv-zL_-yszB7w_-THy3xT8AGUyT7g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124690182</pqid></control><display><type>article</type><title>Big data in breast cancer: Towards precision treatment</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>SAGE Open Access</source><creator>Zhang, Hao ; Hussin, Hasmah ; Hoh, Chee-Choong ; Cheong, Shun-Hui ; Lee, Wei-Kang ; Yahaya, Badrul Hisham</creator><creatorcontrib>Zhang, Hao ; Hussin, Hasmah ; Hoh, Chee-Choong ; Cheong, Shun-Hui ; Lee, Wei-Kang ; Yahaya, Badrul Hisham</creatorcontrib><description>Breast cancer is the most prevalent and deadliest cancer among women globally, representing a major threat to public health. In response, the World Health Organization has established the Global Breast Cancer Initiative framework to reduce breast cancer mortality through global collaboration. The integration of big data analytics (BDA) and precision medicine has transformed our understanding of breast cancer's biological traits and treatment responses. By harnessing large-scale datasets - encompassing genetic, clinical, and environmental data - BDA has enhanced strategies for breast cancer prevention, diagnosis, and treatment, driving the advancement of precision oncology and personalised care. Despite the increasing importance of big data in breast cancer research, comprehensive studies remain sparse, underscoring the need for more systematic investigation. This review evaluates the contributions of big data to breast cancer precision medicine while addressing the associated opportunities and challenges. Through the application of big data, we aim to deepen insights into breast cancer pathogenesis, optimise therapeutic approaches, improve patient outcomes, and ultimately contribute to better survival rates and quality of life. This review seeks to provide a foundation for future research in breast cancer prevention, treatment, and management.</description><identifier>ISSN: 2055-2076</identifier><identifier>EISSN: 2055-2076</identifier><identifier>DOI: 10.1177/20552076241293695</identifier><identifier>PMID: 39502482</identifier><language>eng</language><publisher>United States: SAGE Publications</publisher><subject>Review</subject><ispartof>Digital health, 2024-01, Vol.10, p.20552076241293695</ispartof><rights>The Author(s) 2024.</rights><rights>The Author(s) 2024 2024 SAGE Publications Ltd, unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-19c271242b7bba50ba09c559e0d3aab59f4f4c117ac662a17641e13b61e4d94c3</cites><orcidid>0000-0002-0068-6132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536614/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536614/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39502482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Hussin, Hasmah</creatorcontrib><creatorcontrib>Hoh, Chee-Choong</creatorcontrib><creatorcontrib>Cheong, Shun-Hui</creatorcontrib><creatorcontrib>Lee, Wei-Kang</creatorcontrib><creatorcontrib>Yahaya, Badrul Hisham</creatorcontrib><title>Big data in breast cancer: Towards precision treatment</title><title>Digital health</title><addtitle>Digit Health</addtitle><description>Breast cancer is the most prevalent and deadliest cancer among women globally, representing a major threat to public health. In response, the World Health Organization has established the Global Breast Cancer Initiative framework to reduce breast cancer mortality through global collaboration. The integration of big data analytics (BDA) and precision medicine has transformed our understanding of breast cancer's biological traits and treatment responses. By harnessing large-scale datasets - encompassing genetic, clinical, and environmental data - BDA has enhanced strategies for breast cancer prevention, diagnosis, and treatment, driving the advancement of precision oncology and personalised care. Despite the increasing importance of big data in breast cancer research, comprehensive studies remain sparse, underscoring the need for more systematic investigation. This review evaluates the contributions of big data to breast cancer precision medicine while addressing the associated opportunities and challenges. Through the application of big data, we aim to deepen insights into breast cancer pathogenesis, optimise therapeutic approaches, improve patient outcomes, and ultimately contribute to better survival rates and quality of life. This review seeks to provide a foundation for future research in breast cancer prevention, treatment, and management.</description><subject>Review</subject><issn>2055-2076</issn><issn>2055-2076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkUtLBDEQhIMoKuoP8CJz9LKazmsmXkTFFwhe9Bw6mcwamZ2syazivzfrqiieEirVX6UpQvaBHgHU9TGjUjJaKyaAaa60XCPbS22yFNd_3bfIXs7PlFKoea1BbZItriVlomHbRJ2HadXiiFUYKps85rFyODifTqqH-IapzdU8eRdyiEM1FsM488O4SzY67LPf-zp3yOPV5cPFzeTu_vr24uxu4rhoxglox2pggtnaWpTUItVOSu1pyxGt1J3ohCvroFOKIdRKgAduFXjRauH4DrldcduIz2aewgzTu4kYzKcQ09RgGoPrvWk7SrXSwsoS6CzHRkveNB6VVw23trBOV6z5ws5868oaCfs_0L8vQ3gy0_hqACRXCkQhHH4RUnxZ-DyaWcjO9z0OPi6y4SVZaQoNK1ZYWV2KOSff_eQANcv-zL_-yszB7w_-THy3xT8AGUyT7g</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Zhang, Hao</creator><creator>Hussin, Hasmah</creator><creator>Hoh, Chee-Choong</creator><creator>Cheong, Shun-Hui</creator><creator>Lee, Wei-Kang</creator><creator>Yahaya, Badrul Hisham</creator><general>SAGE Publications</general><general>SAGE Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0068-6132</orcidid></search><sort><creationdate>20240101</creationdate><title>Big data in breast cancer: Towards precision treatment</title><author>Zhang, Hao ; Hussin, Hasmah ; Hoh, Chee-Choong ; Cheong, Shun-Hui ; Lee, Wei-Kang ; Yahaya, Badrul Hisham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-19c271242b7bba50ba09c559e0d3aab59f4f4c117ac662a17641e13b61e4d94c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Hussin, Hasmah</creatorcontrib><creatorcontrib>Hoh, Chee-Choong</creatorcontrib><creatorcontrib>Cheong, Shun-Hui</creatorcontrib><creatorcontrib>Lee, Wei-Kang</creatorcontrib><creatorcontrib>Yahaya, Badrul Hisham</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Digital health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hao</au><au>Hussin, Hasmah</au><au>Hoh, Chee-Choong</au><au>Cheong, Shun-Hui</au><au>Lee, Wei-Kang</au><au>Yahaya, Badrul Hisham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Big data in breast cancer: Towards precision treatment</atitle><jtitle>Digital health</jtitle><addtitle>Digit Health</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>10</volume><spage>20552076241293695</spage><pages>20552076241293695-</pages><issn>2055-2076</issn><eissn>2055-2076</eissn><abstract>Breast cancer is the most prevalent and deadliest cancer among women globally, representing a major threat to public health. In response, the World Health Organization has established the Global Breast Cancer Initiative framework to reduce breast cancer mortality through global collaboration. The integration of big data analytics (BDA) and precision medicine has transformed our understanding of breast cancer's biological traits and treatment responses. By harnessing large-scale datasets - encompassing genetic, clinical, and environmental data - BDA has enhanced strategies for breast cancer prevention, diagnosis, and treatment, driving the advancement of precision oncology and personalised care. Despite the increasing importance of big data in breast cancer research, comprehensive studies remain sparse, underscoring the need for more systematic investigation. This review evaluates the contributions of big data to breast cancer precision medicine while addressing the associated opportunities and challenges. Through the application of big data, we aim to deepen insights into breast cancer pathogenesis, optimise therapeutic approaches, improve patient outcomes, and ultimately contribute to better survival rates and quality of life. This review seeks to provide a foundation for future research in breast cancer prevention, treatment, and management.</abstract><cop>United States</cop><pub>SAGE Publications</pub><pmid>39502482</pmid><doi>10.1177/20552076241293695</doi><orcidid>https://orcid.org/0000-0002-0068-6132</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-2076 |
ispartof | Digital health, 2024-01, Vol.10, p.20552076241293695 |
issn | 2055-2076 2055-2076 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_df009694b5124cb3a895388ea6e683bb |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3); SAGE Open Access |
subjects | Review |
title | Big data in breast cancer: Towards precision treatment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Big%20data%20in%20breast%20cancer:%20Towards%20precision%20treatment&rft.jtitle=Digital%20health&rft.au=Zhang,%20Hao&rft.date=2024-01-01&rft.volume=10&rft.spage=20552076241293695&rft.pages=20552076241293695-&rft.issn=2055-2076&rft.eissn=2055-2076&rft_id=info:doi/10.1177/20552076241293695&rft_dat=%3Cproquest_doaj_%3E3124690182%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-19c271242b7bba50ba09c559e0d3aab59f4f4c117ac662a17641e13b61e4d94c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3124690182&rft_id=info:pmid/39502482&rfr_iscdi=true |