Loading…

Big data in breast cancer: Towards precision treatment

Breast cancer is the most prevalent and deadliest cancer among women globally, representing a major threat to public health. In response, the World Health Organization has established the Global Breast Cancer Initiative framework to reduce breast cancer mortality through global collaboration. The in...

Full description

Saved in:
Bibliographic Details
Published in:Digital health 2024-01, Vol.10, p.20552076241293695
Main Authors: Zhang, Hao, Hussin, Hasmah, Hoh, Chee-Choong, Cheong, Shun-Hui, Lee, Wei-Kang, Yahaya, Badrul Hisham
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c348t-19c271242b7bba50ba09c559e0d3aab59f4f4c117ac662a17641e13b61e4d94c3
container_end_page
container_issue
container_start_page 20552076241293695
container_title Digital health
container_volume 10
creator Zhang, Hao
Hussin, Hasmah
Hoh, Chee-Choong
Cheong, Shun-Hui
Lee, Wei-Kang
Yahaya, Badrul Hisham
description Breast cancer is the most prevalent and deadliest cancer among women globally, representing a major threat to public health. In response, the World Health Organization has established the Global Breast Cancer Initiative framework to reduce breast cancer mortality through global collaboration. The integration of big data analytics (BDA) and precision medicine has transformed our understanding of breast cancer's biological traits and treatment responses. By harnessing large-scale datasets - encompassing genetic, clinical, and environmental data - BDA has enhanced strategies for breast cancer prevention, diagnosis, and treatment, driving the advancement of precision oncology and personalised care. Despite the increasing importance of big data in breast cancer research, comprehensive studies remain sparse, underscoring the need for more systematic investigation. This review evaluates the contributions of big data to breast cancer precision medicine while addressing the associated opportunities and challenges. Through the application of big data, we aim to deepen insights into breast cancer pathogenesis, optimise therapeutic approaches, improve patient outcomes, and ultimately contribute to better survival rates and quality of life. This review seeks to provide a foundation for future research in breast cancer prevention, treatment, and management.
doi_str_mv 10.1177/20552076241293695
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_df009694b5124cb3a895388ea6e683bb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_df009694b5124cb3a895388ea6e683bb</doaj_id><sourcerecordid>3124690182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-19c271242b7bba50ba09c559e0d3aab59f4f4c117ac662a17641e13b61e4d94c3</originalsourceid><addsrcrecordid>eNplkUtLBDEQhIMoKuoP8CJz9LKazmsmXkTFFwhe9Bw6mcwamZ2syazivzfrqiieEirVX6UpQvaBHgHU9TGjUjJaKyaAaa60XCPbS22yFNd_3bfIXs7PlFKoea1BbZItriVlomHbRJ2HadXiiFUYKps85rFyODifTqqH-IapzdU8eRdyiEM1FsM488O4SzY67LPf-zp3yOPV5cPFzeTu_vr24uxu4rhoxglox2pggtnaWpTUItVOSu1pyxGt1J3ohCvroFOKIdRKgAduFXjRauH4DrldcduIz2aewgzTu4kYzKcQ09RgGoPrvWk7SrXSwsoS6CzHRkveNB6VVw23trBOV6z5ws5868oaCfs_0L8vQ3gy0_hqACRXCkQhHH4RUnxZ-DyaWcjO9z0OPi6y4SVZaQoNK1ZYWV2KOSff_eQANcv-zL_-yszB7w_-THy3xT8AGUyT7g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124690182</pqid></control><display><type>article</type><title>Big data in breast cancer: Towards precision treatment</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>SAGE Open Access</source><creator>Zhang, Hao ; Hussin, Hasmah ; Hoh, Chee-Choong ; Cheong, Shun-Hui ; Lee, Wei-Kang ; Yahaya, Badrul Hisham</creator><creatorcontrib>Zhang, Hao ; Hussin, Hasmah ; Hoh, Chee-Choong ; Cheong, Shun-Hui ; Lee, Wei-Kang ; Yahaya, Badrul Hisham</creatorcontrib><description>Breast cancer is the most prevalent and deadliest cancer among women globally, representing a major threat to public health. In response, the World Health Organization has established the Global Breast Cancer Initiative framework to reduce breast cancer mortality through global collaboration. The integration of big data analytics (BDA) and precision medicine has transformed our understanding of breast cancer's biological traits and treatment responses. By harnessing large-scale datasets - encompassing genetic, clinical, and environmental data - BDA has enhanced strategies for breast cancer prevention, diagnosis, and treatment, driving the advancement of precision oncology and personalised care. Despite the increasing importance of big data in breast cancer research, comprehensive studies remain sparse, underscoring the need for more systematic investigation. This review evaluates the contributions of big data to breast cancer precision medicine while addressing the associated opportunities and challenges. Through the application of big data, we aim to deepen insights into breast cancer pathogenesis, optimise therapeutic approaches, improve patient outcomes, and ultimately contribute to better survival rates and quality of life. This review seeks to provide a foundation for future research in breast cancer prevention, treatment, and management.</description><identifier>ISSN: 2055-2076</identifier><identifier>EISSN: 2055-2076</identifier><identifier>DOI: 10.1177/20552076241293695</identifier><identifier>PMID: 39502482</identifier><language>eng</language><publisher>United States: SAGE Publications</publisher><subject>Review</subject><ispartof>Digital health, 2024-01, Vol.10, p.20552076241293695</ispartof><rights>The Author(s) 2024.</rights><rights>The Author(s) 2024 2024 SAGE Publications Ltd, unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-19c271242b7bba50ba09c559e0d3aab59f4f4c117ac662a17641e13b61e4d94c3</cites><orcidid>0000-0002-0068-6132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536614/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536614/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39502482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Hussin, Hasmah</creatorcontrib><creatorcontrib>Hoh, Chee-Choong</creatorcontrib><creatorcontrib>Cheong, Shun-Hui</creatorcontrib><creatorcontrib>Lee, Wei-Kang</creatorcontrib><creatorcontrib>Yahaya, Badrul Hisham</creatorcontrib><title>Big data in breast cancer: Towards precision treatment</title><title>Digital health</title><addtitle>Digit Health</addtitle><description>Breast cancer is the most prevalent and deadliest cancer among women globally, representing a major threat to public health. In response, the World Health Organization has established the Global Breast Cancer Initiative framework to reduce breast cancer mortality through global collaboration. The integration of big data analytics (BDA) and precision medicine has transformed our understanding of breast cancer's biological traits and treatment responses. By harnessing large-scale datasets - encompassing genetic, clinical, and environmental data - BDA has enhanced strategies for breast cancer prevention, diagnosis, and treatment, driving the advancement of precision oncology and personalised care. Despite the increasing importance of big data in breast cancer research, comprehensive studies remain sparse, underscoring the need for more systematic investigation. This review evaluates the contributions of big data to breast cancer precision medicine while addressing the associated opportunities and challenges. Through the application of big data, we aim to deepen insights into breast cancer pathogenesis, optimise therapeutic approaches, improve patient outcomes, and ultimately contribute to better survival rates and quality of life. This review seeks to provide a foundation for future research in breast cancer prevention, treatment, and management.</description><subject>Review</subject><issn>2055-2076</issn><issn>2055-2076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkUtLBDEQhIMoKuoP8CJz9LKazmsmXkTFFwhe9Bw6mcwamZ2syazivzfrqiieEirVX6UpQvaBHgHU9TGjUjJaKyaAaa60XCPbS22yFNd_3bfIXs7PlFKoea1BbZItriVlomHbRJ2HadXiiFUYKps85rFyODifTqqH-IapzdU8eRdyiEM1FsM488O4SzY67LPf-zp3yOPV5cPFzeTu_vr24uxu4rhoxglox2pggtnaWpTUItVOSu1pyxGt1J3ohCvroFOKIdRKgAduFXjRauH4DrldcduIz2aewgzTu4kYzKcQ09RgGoPrvWk7SrXSwsoS6CzHRkveNB6VVw23trBOV6z5ws5868oaCfs_0L8vQ3gy0_hqACRXCkQhHH4RUnxZ-DyaWcjO9z0OPi6y4SVZaQoNK1ZYWV2KOSff_eQANcv-zL_-yszB7w_-THy3xT8AGUyT7g</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Zhang, Hao</creator><creator>Hussin, Hasmah</creator><creator>Hoh, Chee-Choong</creator><creator>Cheong, Shun-Hui</creator><creator>Lee, Wei-Kang</creator><creator>Yahaya, Badrul Hisham</creator><general>SAGE Publications</general><general>SAGE Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0068-6132</orcidid></search><sort><creationdate>20240101</creationdate><title>Big data in breast cancer: Towards precision treatment</title><author>Zhang, Hao ; Hussin, Hasmah ; Hoh, Chee-Choong ; Cheong, Shun-Hui ; Lee, Wei-Kang ; Yahaya, Badrul Hisham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-19c271242b7bba50ba09c559e0d3aab59f4f4c117ac662a17641e13b61e4d94c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Hussin, Hasmah</creatorcontrib><creatorcontrib>Hoh, Chee-Choong</creatorcontrib><creatorcontrib>Cheong, Shun-Hui</creatorcontrib><creatorcontrib>Lee, Wei-Kang</creatorcontrib><creatorcontrib>Yahaya, Badrul Hisham</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Digital health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hao</au><au>Hussin, Hasmah</au><au>Hoh, Chee-Choong</au><au>Cheong, Shun-Hui</au><au>Lee, Wei-Kang</au><au>Yahaya, Badrul Hisham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Big data in breast cancer: Towards precision treatment</atitle><jtitle>Digital health</jtitle><addtitle>Digit Health</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>10</volume><spage>20552076241293695</spage><pages>20552076241293695-</pages><issn>2055-2076</issn><eissn>2055-2076</eissn><abstract>Breast cancer is the most prevalent and deadliest cancer among women globally, representing a major threat to public health. In response, the World Health Organization has established the Global Breast Cancer Initiative framework to reduce breast cancer mortality through global collaboration. The integration of big data analytics (BDA) and precision medicine has transformed our understanding of breast cancer's biological traits and treatment responses. By harnessing large-scale datasets - encompassing genetic, clinical, and environmental data - BDA has enhanced strategies for breast cancer prevention, diagnosis, and treatment, driving the advancement of precision oncology and personalised care. Despite the increasing importance of big data in breast cancer research, comprehensive studies remain sparse, underscoring the need for more systematic investigation. This review evaluates the contributions of big data to breast cancer precision medicine while addressing the associated opportunities and challenges. Through the application of big data, we aim to deepen insights into breast cancer pathogenesis, optimise therapeutic approaches, improve patient outcomes, and ultimately contribute to better survival rates and quality of life. This review seeks to provide a foundation for future research in breast cancer prevention, treatment, and management.</abstract><cop>United States</cop><pub>SAGE Publications</pub><pmid>39502482</pmid><doi>10.1177/20552076241293695</doi><orcidid>https://orcid.org/0000-0002-0068-6132</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2055-2076
ispartof Digital health, 2024-01, Vol.10, p.20552076241293695
issn 2055-2076
2055-2076
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_df009694b5124cb3a895388ea6e683bb
source PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3); SAGE Open Access
subjects Review
title Big data in breast cancer: Towards precision treatment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Big%20data%20in%20breast%20cancer:%20Towards%20precision%20treatment&rft.jtitle=Digital%20health&rft.au=Zhang,%20Hao&rft.date=2024-01-01&rft.volume=10&rft.spage=20552076241293695&rft.pages=20552076241293695-&rft.issn=2055-2076&rft.eissn=2055-2076&rft_id=info:doi/10.1177/20552076241293695&rft_dat=%3Cproquest_doaj_%3E3124690182%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-19c271242b7bba50ba09c559e0d3aab59f4f4c117ac662a17641e13b61e4d94c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3124690182&rft_id=info:pmid/39502482&rfr_iscdi=true