Loading…
Metal-responsive promoter DNA compaction by the ferric uptake regulator
Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the H...
Saved in:
Published in: | Nature communications 2016-08, Vol.7 (1), p.12593-12593, Article 12593 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c512t-9fa9d0a5b979e497d31de3afb09322f785189741ce9af124988f28598fdee29d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c512t-9fa9d0a5b979e497d31de3afb09322f785189741ce9af124988f28598fdee29d3 |
container_end_page | 12593 |
container_issue | 1 |
container_start_page | 12593 |
container_title | Nature communications |
container_volume | 7 |
creator | Roncarati, Davide Pelliciari, Simone Doniselli, Nicola Maggi, Stefano Vannini, Andrea Valzania, Luca Mazzei, Luca Zambelli, Barbara Rivetti, Claudio Danielli, Alberto |
description | Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the
Helicobacter pylori
ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators.
H. pylori
Fur represses the transcription of the essential
arsRS
acid acclimation operon through iron-responsive oligomerization and DNA compaction, encasing the
arsR
transcriptional start site in a repressive macromolecular complex. A second metal-dependent regulator NikR functions as nickel-dependent anti-repressor at this promoter, antagonizing the binding of Fur to the operator elements responsible for the DNA condensation. The results allow unifying
H. pylori
metal ion homeostasis and acid acclimation in a mechanistically coherent model, and demonstrate, for the first time, the existence of a selective metal-responsive DNA compaction mechanism controlling bacterial transcriptional regulation.
The Fur protein regulates transcription of bacterial genes in response to metal ions. Here, the authors show that the Fur protein from
Helicobacter pylori
represses transcription by iron-responsive oligomerization and DNA compaction, encasing the transcriptional start site in a macromolecular complex. |
doi_str_mv | 10.1038/ncomms12593 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_df1a4b051ef64998b7f2d859a4491d54</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_df1a4b051ef64998b7f2d859a4491d54</doaj_id><sourcerecordid>4158646981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-9fa9d0a5b979e497d31de3afb09322f785189741ce9af124988f28598fdee29d3</originalsourceid><addsrcrecordid>eNptkc9PFTEQxxujEQKcvJtNvJjIQn--7VxMCCqSgF703HS308c-d7dr2yXhv7fwkDyMvbSZ-eQzk34JecPoCaNCn05dGMfEuALxguxzKlnNGi5e7rz3yFFKG1qOAKalfE32eKOU5pTvk4trzHaoI6Y5TKm_xWqOYQwZY_Xp21lV7LPtch-mqr2r8g1WHmPsu2qZs_2FVcT1Mtgc4iF55e2Q8OjxPiA_v3z-cf61vvp-cXl-dlV3ivFcg7fgqFUtNIASGieYQ2F9S0Fw7hutmIZGsg7BesYlaO25VqC9Q-TgxAG53HpdsBszx3608c4E25uHQohrY2PuuwGN88zKliqGfiUBdNt47orLSgnMKVlcH7eueWlHdB1OOdrhmfR5Z-pvzDrcGkVpI5QqgvePghh-L5iyGfvU4TDYCcOSDNNMrpReMV7Qd_-gm7DEqXzVPSVAUi2gUB-2VBdDShH90zKMmvu8zU7ehX67u_8T-zfdAhxvgVRa0xrjztD_-P4A6E-1nA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813940839</pqid></control><display><type>article</type><title>Metal-responsive promoter DNA compaction by the ferric uptake regulator</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Roncarati, Davide ; Pelliciari, Simone ; Doniselli, Nicola ; Maggi, Stefano ; Vannini, Andrea ; Valzania, Luca ; Mazzei, Luca ; Zambelli, Barbara ; Rivetti, Claudio ; Danielli, Alberto</creator><creatorcontrib>Roncarati, Davide ; Pelliciari, Simone ; Doniselli, Nicola ; Maggi, Stefano ; Vannini, Andrea ; Valzania, Luca ; Mazzei, Luca ; Zambelli, Barbara ; Rivetti, Claudio ; Danielli, Alberto</creatorcontrib><description>Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the
Helicobacter pylori
ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators.
H. pylori
Fur represses the transcription of the essential
arsRS
acid acclimation operon through iron-responsive oligomerization and DNA compaction, encasing the
arsR
transcriptional start site in a repressive macromolecular complex. A second metal-dependent regulator NikR functions as nickel-dependent anti-repressor at this promoter, antagonizing the binding of Fur to the operator elements responsible for the DNA condensation. The results allow unifying
H. pylori
metal ion homeostasis and acid acclimation in a mechanistically coherent model, and demonstrate, for the first time, the existence of a selective metal-responsive DNA compaction mechanism controlling bacterial transcriptional regulation.
The Fur protein regulates transcription of bacterial genes in response to metal ions. Here, the authors show that the Fur protein from
Helicobacter pylori
represses transcription by iron-responsive oligomerization and DNA compaction, encasing the transcriptional start site in a macromolecular complex.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms12593</identifier><identifier>PMID: 27558202</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38 ; 631/1647/328/1262 ; 631/326/421 ; 631/337/572/2102 ; Acids ; Bacterial Proteins - metabolism ; Base Sequence ; DNA, Bacterial - genetics ; Gene Expression Regulation, Bacterial - drug effects ; Helicobacter pylori - drug effects ; Helicobacter pylori - genetics ; Helicobacter pylori - metabolism ; Homeostasis ; Humanities and Social Sciences ; Ions ; Iron - metabolism ; Kinases ; Macromolecular Substances - metabolism ; Microscopy ; Microscopy, Atomic Force ; Models, Biological ; multidisciplinary ; Nickel ; Nucleoproteins - metabolism ; Operator Regions, Genetic - genetics ; Promoter Regions, Genetic ; Protein Binding ; Repressor Proteins - metabolism ; Science ; Science (multidisciplinary) ; Transcription, Genetic - drug effects</subject><ispartof>Nature communications, 2016-08, Vol.7 (1), p.12593-12593, Article 12593</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Aug 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-9fa9d0a5b979e497d31de3afb09322f785189741ce9af124988f28598fdee29d3</citedby><cites>FETCH-LOGICAL-c512t-9fa9d0a5b979e497d31de3afb09322f785189741ce9af124988f28598fdee29d3</cites><orcidid>0000-0002-9414-9898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1813940839/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1813940839?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,36996,44573,53774,53776,74877</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27558202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roncarati, Davide</creatorcontrib><creatorcontrib>Pelliciari, Simone</creatorcontrib><creatorcontrib>Doniselli, Nicola</creatorcontrib><creatorcontrib>Maggi, Stefano</creatorcontrib><creatorcontrib>Vannini, Andrea</creatorcontrib><creatorcontrib>Valzania, Luca</creatorcontrib><creatorcontrib>Mazzei, Luca</creatorcontrib><creatorcontrib>Zambelli, Barbara</creatorcontrib><creatorcontrib>Rivetti, Claudio</creatorcontrib><creatorcontrib>Danielli, Alberto</creatorcontrib><title>Metal-responsive promoter DNA compaction by the ferric uptake regulator</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the
Helicobacter pylori
ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators.
H. pylori
Fur represses the transcription of the essential
arsRS
acid acclimation operon through iron-responsive oligomerization and DNA compaction, encasing the
arsR
transcriptional start site in a repressive macromolecular complex. A second metal-dependent regulator NikR functions as nickel-dependent anti-repressor at this promoter, antagonizing the binding of Fur to the operator elements responsible for the DNA condensation. The results allow unifying
H. pylori
metal ion homeostasis and acid acclimation in a mechanistically coherent model, and demonstrate, for the first time, the existence of a selective metal-responsive DNA compaction mechanism controlling bacterial transcriptional regulation.
The Fur protein regulates transcription of bacterial genes in response to metal ions. Here, the authors show that the Fur protein from
Helicobacter pylori
represses transcription by iron-responsive oligomerization and DNA compaction, encasing the transcriptional start site in a macromolecular complex.</description><subject>38</subject><subject>631/1647/328/1262</subject><subject>631/326/421</subject><subject>631/337/572/2102</subject><subject>Acids</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>DNA, Bacterial - genetics</subject><subject>Gene Expression Regulation, Bacterial - drug effects</subject><subject>Helicobacter pylori - drug effects</subject><subject>Helicobacter pylori - genetics</subject><subject>Helicobacter pylori - metabolism</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Ions</subject><subject>Iron - metabolism</subject><subject>Kinases</subject><subject>Macromolecular Substances - metabolism</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Nickel</subject><subject>Nucleoproteins - metabolism</subject><subject>Operator Regions, Genetic - genetics</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding</subject><subject>Repressor Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription, Genetic - drug effects</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkc9PFTEQxxujEQKcvJtNvJjIQn--7VxMCCqSgF703HS308c-d7dr2yXhv7fwkDyMvbSZ-eQzk34JecPoCaNCn05dGMfEuALxguxzKlnNGi5e7rz3yFFKG1qOAKalfE32eKOU5pTvk4trzHaoI6Y5TKm_xWqOYQwZY_Xp21lV7LPtch-mqr2r8g1WHmPsu2qZs_2FVcT1Mtgc4iF55e2Q8OjxPiA_v3z-cf61vvp-cXl-dlV3ivFcg7fgqFUtNIASGieYQ2F9S0Fw7hutmIZGsg7BesYlaO25VqC9Q-TgxAG53HpdsBszx3608c4E25uHQohrY2PuuwGN88zKliqGfiUBdNt47orLSgnMKVlcH7eueWlHdB1OOdrhmfR5Z-pvzDrcGkVpI5QqgvePghh-L5iyGfvU4TDYCcOSDNNMrpReMV7Qd_-gm7DEqXzVPSVAUi2gUB-2VBdDShH90zKMmvu8zU7ehX67u_8T-zfdAhxvgVRa0xrjztD_-P4A6E-1nA</recordid><startdate>20160825</startdate><enddate>20160825</enddate><creator>Roncarati, Davide</creator><creator>Pelliciari, Simone</creator><creator>Doniselli, Nicola</creator><creator>Maggi, Stefano</creator><creator>Vannini, Andrea</creator><creator>Valzania, Luca</creator><creator>Mazzei, Luca</creator><creator>Zambelli, Barbara</creator><creator>Rivetti, Claudio</creator><creator>Danielli, Alberto</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9414-9898</orcidid></search><sort><creationdate>20160825</creationdate><title>Metal-responsive promoter DNA compaction by the ferric uptake regulator</title><author>Roncarati, Davide ; Pelliciari, Simone ; Doniselli, Nicola ; Maggi, Stefano ; Vannini, Andrea ; Valzania, Luca ; Mazzei, Luca ; Zambelli, Barbara ; Rivetti, Claudio ; Danielli, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-9fa9d0a5b979e497d31de3afb09322f785189741ce9af124988f28598fdee29d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>38</topic><topic>631/1647/328/1262</topic><topic>631/326/421</topic><topic>631/337/572/2102</topic><topic>Acids</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>DNA, Bacterial - genetics</topic><topic>Gene Expression Regulation, Bacterial - drug effects</topic><topic>Helicobacter pylori - drug effects</topic><topic>Helicobacter pylori - genetics</topic><topic>Helicobacter pylori - metabolism</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Ions</topic><topic>Iron - metabolism</topic><topic>Kinases</topic><topic>Macromolecular Substances - metabolism</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Nickel</topic><topic>Nucleoproteins - metabolism</topic><topic>Operator Regions, Genetic - genetics</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding</topic><topic>Repressor Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription, Genetic - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roncarati, Davide</creatorcontrib><creatorcontrib>Pelliciari, Simone</creatorcontrib><creatorcontrib>Doniselli, Nicola</creatorcontrib><creatorcontrib>Maggi, Stefano</creatorcontrib><creatorcontrib>Vannini, Andrea</creatorcontrib><creatorcontrib>Valzania, Luca</creatorcontrib><creatorcontrib>Mazzei, Luca</creatorcontrib><creatorcontrib>Zambelli, Barbara</creatorcontrib><creatorcontrib>Rivetti, Claudio</creatorcontrib><creatorcontrib>Danielli, Alberto</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roncarati, Davide</au><au>Pelliciari, Simone</au><au>Doniselli, Nicola</au><au>Maggi, Stefano</au><au>Vannini, Andrea</au><au>Valzania, Luca</au><au>Mazzei, Luca</au><au>Zambelli, Barbara</au><au>Rivetti, Claudio</au><au>Danielli, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal-responsive promoter DNA compaction by the ferric uptake regulator</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-08-25</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>12593</spage><epage>12593</epage><pages>12593-12593</pages><artnum>12593</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the
Helicobacter pylori
ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators.
H. pylori
Fur represses the transcription of the essential
arsRS
acid acclimation operon through iron-responsive oligomerization and DNA compaction, encasing the
arsR
transcriptional start site in a repressive macromolecular complex. A second metal-dependent regulator NikR functions as nickel-dependent anti-repressor at this promoter, antagonizing the binding of Fur to the operator elements responsible for the DNA condensation. The results allow unifying
H. pylori
metal ion homeostasis and acid acclimation in a mechanistically coherent model, and demonstrate, for the first time, the existence of a selective metal-responsive DNA compaction mechanism controlling bacterial transcriptional regulation.
The Fur protein regulates transcription of bacterial genes in response to metal ions. Here, the authors show that the Fur protein from
Helicobacter pylori
represses transcription by iron-responsive oligomerization and DNA compaction, encasing the transcriptional start site in a macromolecular complex.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27558202</pmid><doi>10.1038/ncomms12593</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9414-9898</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2016-08, Vol.7 (1), p.12593-12593, Article 12593 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_df1a4b051ef64998b7f2d859a4491d54 |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 38 631/1647/328/1262 631/326/421 631/337/572/2102 Acids Bacterial Proteins - metabolism Base Sequence DNA, Bacterial - genetics Gene Expression Regulation, Bacterial - drug effects Helicobacter pylori - drug effects Helicobacter pylori - genetics Helicobacter pylori - metabolism Homeostasis Humanities and Social Sciences Ions Iron - metabolism Kinases Macromolecular Substances - metabolism Microscopy Microscopy, Atomic Force Models, Biological multidisciplinary Nickel Nucleoproteins - metabolism Operator Regions, Genetic - genetics Promoter Regions, Genetic Protein Binding Repressor Proteins - metabolism Science Science (multidisciplinary) Transcription, Genetic - drug effects |
title | Metal-responsive promoter DNA compaction by the ferric uptake regulator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A56%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal-responsive%20promoter%20DNA%20compaction%20by%20the%20ferric%20uptake%20regulator&rft.jtitle=Nature%20communications&rft.au=Roncarati,%20Davide&rft.date=2016-08-25&rft.volume=7&rft.issue=1&rft.spage=12593&rft.epage=12593&rft.pages=12593-12593&rft.artnum=12593&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms12593&rft_dat=%3Cproquest_doaj_%3E4158646981%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-9fa9d0a5b979e497d31de3afb09322f785189741ce9af124988f28598fdee29d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1813940839&rft_id=info:pmid/27558202&rfr_iscdi=true |