Loading…

Metal-responsive promoter DNA compaction by the ferric uptake regulator

Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the H...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2016-08, Vol.7 (1), p.12593-12593, Article 12593
Main Authors: Roncarati, Davide, Pelliciari, Simone, Doniselli, Nicola, Maggi, Stefano, Vannini, Andrea, Valzania, Luca, Mazzei, Luca, Zambelli, Barbara, Rivetti, Claudio, Danielli, Alberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c512t-9fa9d0a5b979e497d31de3afb09322f785189741ce9af124988f28598fdee29d3
cites cdi_FETCH-LOGICAL-c512t-9fa9d0a5b979e497d31de3afb09322f785189741ce9af124988f28598fdee29d3
container_end_page 12593
container_issue 1
container_start_page 12593
container_title Nature communications
container_volume 7
creator Roncarati, Davide
Pelliciari, Simone
Doniselli, Nicola
Maggi, Stefano
Vannini, Andrea
Valzania, Luca
Mazzei, Luca
Zambelli, Barbara
Rivetti, Claudio
Danielli, Alberto
description Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the Helicobacter pylori ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators. H. pylori Fur represses the transcription of the essential arsRS acid acclimation operon through iron-responsive oligomerization and DNA compaction, encasing the arsR transcriptional start site in a repressive macromolecular complex. A second metal-dependent regulator NikR functions as nickel-dependent anti-repressor at this promoter, antagonizing the binding of Fur to the operator elements responsible for the DNA condensation. The results allow unifying H. pylori metal ion homeostasis and acid acclimation in a mechanistically coherent model, and demonstrate, for the first time, the existence of a selective metal-responsive DNA compaction mechanism controlling bacterial transcriptional regulation. The Fur protein regulates transcription of bacterial genes in response to metal ions. Here, the authors show that the Fur protein from Helicobacter pylori represses transcription by iron-responsive oligomerization and DNA compaction, encasing the transcriptional start site in a macromolecular complex.
doi_str_mv 10.1038/ncomms12593
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_df1a4b051ef64998b7f2d859a4491d54</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_df1a4b051ef64998b7f2d859a4491d54</doaj_id><sourcerecordid>4158646981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-9fa9d0a5b979e497d31de3afb09322f785189741ce9af124988f28598fdee29d3</originalsourceid><addsrcrecordid>eNptkc9PFTEQxxujEQKcvJtNvJjIQn--7VxMCCqSgF703HS308c-d7dr2yXhv7fwkDyMvbSZ-eQzk34JecPoCaNCn05dGMfEuALxguxzKlnNGi5e7rz3yFFKG1qOAKalfE32eKOU5pTvk4trzHaoI6Y5TKm_xWqOYQwZY_Xp21lV7LPtch-mqr2r8g1WHmPsu2qZs_2FVcT1Mtgc4iF55e2Q8OjxPiA_v3z-cf61vvp-cXl-dlV3ivFcg7fgqFUtNIASGieYQ2F9S0Fw7hutmIZGsg7BesYlaO25VqC9Q-TgxAG53HpdsBszx3608c4E25uHQohrY2PuuwGN88zKliqGfiUBdNt47orLSgnMKVlcH7eueWlHdB1OOdrhmfR5Z-pvzDrcGkVpI5QqgvePghh-L5iyGfvU4TDYCcOSDNNMrpReMV7Qd_-gm7DEqXzVPSVAUi2gUB-2VBdDShH90zKMmvu8zU7ehX67u_8T-zfdAhxvgVRa0xrjztD_-P4A6E-1nA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813940839</pqid></control><display><type>article</type><title>Metal-responsive promoter DNA compaction by the ferric uptake regulator</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Roncarati, Davide ; Pelliciari, Simone ; Doniselli, Nicola ; Maggi, Stefano ; Vannini, Andrea ; Valzania, Luca ; Mazzei, Luca ; Zambelli, Barbara ; Rivetti, Claudio ; Danielli, Alberto</creator><creatorcontrib>Roncarati, Davide ; Pelliciari, Simone ; Doniselli, Nicola ; Maggi, Stefano ; Vannini, Andrea ; Valzania, Luca ; Mazzei, Luca ; Zambelli, Barbara ; Rivetti, Claudio ; Danielli, Alberto</creatorcontrib><description>Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the Helicobacter pylori ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators. H. pylori Fur represses the transcription of the essential arsRS acid acclimation operon through iron-responsive oligomerization and DNA compaction, encasing the arsR transcriptional start site in a repressive macromolecular complex. A second metal-dependent regulator NikR functions as nickel-dependent anti-repressor at this promoter, antagonizing the binding of Fur to the operator elements responsible for the DNA condensation. The results allow unifying H. pylori metal ion homeostasis and acid acclimation in a mechanistically coherent model, and demonstrate, for the first time, the existence of a selective metal-responsive DNA compaction mechanism controlling bacterial transcriptional regulation. The Fur protein regulates transcription of bacterial genes in response to metal ions. Here, the authors show that the Fur protein from Helicobacter pylori represses transcription by iron-responsive oligomerization and DNA compaction, encasing the transcriptional start site in a macromolecular complex.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms12593</identifier><identifier>PMID: 27558202</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38 ; 631/1647/328/1262 ; 631/326/421 ; 631/337/572/2102 ; Acids ; Bacterial Proteins - metabolism ; Base Sequence ; DNA, Bacterial - genetics ; Gene Expression Regulation, Bacterial - drug effects ; Helicobacter pylori - drug effects ; Helicobacter pylori - genetics ; Helicobacter pylori - metabolism ; Homeostasis ; Humanities and Social Sciences ; Ions ; Iron - metabolism ; Kinases ; Macromolecular Substances - metabolism ; Microscopy ; Microscopy, Atomic Force ; Models, Biological ; multidisciplinary ; Nickel ; Nucleoproteins - metabolism ; Operator Regions, Genetic - genetics ; Promoter Regions, Genetic ; Protein Binding ; Repressor Proteins - metabolism ; Science ; Science (multidisciplinary) ; Transcription, Genetic - drug effects</subject><ispartof>Nature communications, 2016-08, Vol.7 (1), p.12593-12593, Article 12593</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Aug 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-9fa9d0a5b979e497d31de3afb09322f785189741ce9af124988f28598fdee29d3</citedby><cites>FETCH-LOGICAL-c512t-9fa9d0a5b979e497d31de3afb09322f785189741ce9af124988f28598fdee29d3</cites><orcidid>0000-0002-9414-9898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1813940839/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1813940839?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,36996,44573,53774,53776,74877</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27558202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roncarati, Davide</creatorcontrib><creatorcontrib>Pelliciari, Simone</creatorcontrib><creatorcontrib>Doniselli, Nicola</creatorcontrib><creatorcontrib>Maggi, Stefano</creatorcontrib><creatorcontrib>Vannini, Andrea</creatorcontrib><creatorcontrib>Valzania, Luca</creatorcontrib><creatorcontrib>Mazzei, Luca</creatorcontrib><creatorcontrib>Zambelli, Barbara</creatorcontrib><creatorcontrib>Rivetti, Claudio</creatorcontrib><creatorcontrib>Danielli, Alberto</creatorcontrib><title>Metal-responsive promoter DNA compaction by the ferric uptake regulator</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the Helicobacter pylori ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators. H. pylori Fur represses the transcription of the essential arsRS acid acclimation operon through iron-responsive oligomerization and DNA compaction, encasing the arsR transcriptional start site in a repressive macromolecular complex. A second metal-dependent regulator NikR functions as nickel-dependent anti-repressor at this promoter, antagonizing the binding of Fur to the operator elements responsible for the DNA condensation. The results allow unifying H. pylori metal ion homeostasis and acid acclimation in a mechanistically coherent model, and demonstrate, for the first time, the existence of a selective metal-responsive DNA compaction mechanism controlling bacterial transcriptional regulation. The Fur protein regulates transcription of bacterial genes in response to metal ions. Here, the authors show that the Fur protein from Helicobacter pylori represses transcription by iron-responsive oligomerization and DNA compaction, encasing the transcriptional start site in a macromolecular complex.</description><subject>38</subject><subject>631/1647/328/1262</subject><subject>631/326/421</subject><subject>631/337/572/2102</subject><subject>Acids</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>DNA, Bacterial - genetics</subject><subject>Gene Expression Regulation, Bacterial - drug effects</subject><subject>Helicobacter pylori - drug effects</subject><subject>Helicobacter pylori - genetics</subject><subject>Helicobacter pylori - metabolism</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Ions</subject><subject>Iron - metabolism</subject><subject>Kinases</subject><subject>Macromolecular Substances - metabolism</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Nickel</subject><subject>Nucleoproteins - metabolism</subject><subject>Operator Regions, Genetic - genetics</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding</subject><subject>Repressor Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription, Genetic - drug effects</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkc9PFTEQxxujEQKcvJtNvJjIQn--7VxMCCqSgF703HS308c-d7dr2yXhv7fwkDyMvbSZ-eQzk34JecPoCaNCn05dGMfEuALxguxzKlnNGi5e7rz3yFFKG1qOAKalfE32eKOU5pTvk4trzHaoI6Y5TKm_xWqOYQwZY_Xp21lV7LPtch-mqr2r8g1WHmPsu2qZs_2FVcT1Mtgc4iF55e2Q8OjxPiA_v3z-cf61vvp-cXl-dlV3ivFcg7fgqFUtNIASGieYQ2F9S0Fw7hutmIZGsg7BesYlaO25VqC9Q-TgxAG53HpdsBszx3608c4E25uHQohrY2PuuwGN88zKliqGfiUBdNt47orLSgnMKVlcH7eueWlHdB1OOdrhmfR5Z-pvzDrcGkVpI5QqgvePghh-L5iyGfvU4TDYCcOSDNNMrpReMV7Qd_-gm7DEqXzVPSVAUi2gUB-2VBdDShH90zKMmvu8zU7ehX67u_8T-zfdAhxvgVRa0xrjztD_-P4A6E-1nA</recordid><startdate>20160825</startdate><enddate>20160825</enddate><creator>Roncarati, Davide</creator><creator>Pelliciari, Simone</creator><creator>Doniselli, Nicola</creator><creator>Maggi, Stefano</creator><creator>Vannini, Andrea</creator><creator>Valzania, Luca</creator><creator>Mazzei, Luca</creator><creator>Zambelli, Barbara</creator><creator>Rivetti, Claudio</creator><creator>Danielli, Alberto</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9414-9898</orcidid></search><sort><creationdate>20160825</creationdate><title>Metal-responsive promoter DNA compaction by the ferric uptake regulator</title><author>Roncarati, Davide ; Pelliciari, Simone ; Doniselli, Nicola ; Maggi, Stefano ; Vannini, Andrea ; Valzania, Luca ; Mazzei, Luca ; Zambelli, Barbara ; Rivetti, Claudio ; Danielli, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-9fa9d0a5b979e497d31de3afb09322f785189741ce9af124988f28598fdee29d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>38</topic><topic>631/1647/328/1262</topic><topic>631/326/421</topic><topic>631/337/572/2102</topic><topic>Acids</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>DNA, Bacterial - genetics</topic><topic>Gene Expression Regulation, Bacterial - drug effects</topic><topic>Helicobacter pylori - drug effects</topic><topic>Helicobacter pylori - genetics</topic><topic>Helicobacter pylori - metabolism</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Ions</topic><topic>Iron - metabolism</topic><topic>Kinases</topic><topic>Macromolecular Substances - metabolism</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Nickel</topic><topic>Nucleoproteins - metabolism</topic><topic>Operator Regions, Genetic - genetics</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding</topic><topic>Repressor Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription, Genetic - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roncarati, Davide</creatorcontrib><creatorcontrib>Pelliciari, Simone</creatorcontrib><creatorcontrib>Doniselli, Nicola</creatorcontrib><creatorcontrib>Maggi, Stefano</creatorcontrib><creatorcontrib>Vannini, Andrea</creatorcontrib><creatorcontrib>Valzania, Luca</creatorcontrib><creatorcontrib>Mazzei, Luca</creatorcontrib><creatorcontrib>Zambelli, Barbara</creatorcontrib><creatorcontrib>Rivetti, Claudio</creatorcontrib><creatorcontrib>Danielli, Alberto</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roncarati, Davide</au><au>Pelliciari, Simone</au><au>Doniselli, Nicola</au><au>Maggi, Stefano</au><au>Vannini, Andrea</au><au>Valzania, Luca</au><au>Mazzei, Luca</au><au>Zambelli, Barbara</au><au>Rivetti, Claudio</au><au>Danielli, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal-responsive promoter DNA compaction by the ferric uptake regulator</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-08-25</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>12593</spage><epage>12593</epage><pages>12593-12593</pages><artnum>12593</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the Helicobacter pylori ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators. H. pylori Fur represses the transcription of the essential arsRS acid acclimation operon through iron-responsive oligomerization and DNA compaction, encasing the arsR transcriptional start site in a repressive macromolecular complex. A second metal-dependent regulator NikR functions as nickel-dependent anti-repressor at this promoter, antagonizing the binding of Fur to the operator elements responsible for the DNA condensation. The results allow unifying H. pylori metal ion homeostasis and acid acclimation in a mechanistically coherent model, and demonstrate, for the first time, the existence of a selective metal-responsive DNA compaction mechanism controlling bacterial transcriptional regulation. The Fur protein regulates transcription of bacterial genes in response to metal ions. Here, the authors show that the Fur protein from Helicobacter pylori represses transcription by iron-responsive oligomerization and DNA compaction, encasing the transcriptional start site in a macromolecular complex.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27558202</pmid><doi>10.1038/ncomms12593</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9414-9898</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2016-08, Vol.7 (1), p.12593-12593, Article 12593
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_df1a4b051ef64998b7f2d859a4491d54
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 38
631/1647/328/1262
631/326/421
631/337/572/2102
Acids
Bacterial Proteins - metabolism
Base Sequence
DNA, Bacterial - genetics
Gene Expression Regulation, Bacterial - drug effects
Helicobacter pylori - drug effects
Helicobacter pylori - genetics
Helicobacter pylori - metabolism
Homeostasis
Humanities and Social Sciences
Ions
Iron - metabolism
Kinases
Macromolecular Substances - metabolism
Microscopy
Microscopy, Atomic Force
Models, Biological
multidisciplinary
Nickel
Nucleoproteins - metabolism
Operator Regions, Genetic - genetics
Promoter Regions, Genetic
Protein Binding
Repressor Proteins - metabolism
Science
Science (multidisciplinary)
Transcription, Genetic - drug effects
title Metal-responsive promoter DNA compaction by the ferric uptake regulator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A56%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal-responsive%20promoter%20DNA%20compaction%20by%20the%20ferric%20uptake%20regulator&rft.jtitle=Nature%20communications&rft.au=Roncarati,%20Davide&rft.date=2016-08-25&rft.volume=7&rft.issue=1&rft.spage=12593&rft.epage=12593&rft.pages=12593-12593&rft.artnum=12593&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms12593&rft_dat=%3Cproquest_doaj_%3E4158646981%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-9fa9d0a5b979e497d31de3afb09322f785189741ce9af124988f28598fdee29d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1813940839&rft_id=info:pmid/27558202&rfr_iscdi=true