Loading…

Beyond MD17: the reactive xxMD dataset

System specific neural force fields (NFFs) have gained popularity in computational chemistry. One of the most popular datasets as a bencharmk to develop NFF models is the MD17 dataset and its subsequent extension. These datasets comprise geometries from the equilibrium region of the ground electroni...

Full description

Saved in:
Bibliographic Details
Published in:Scientific data 2024-02, Vol.11 (1), p.222-222, Article 222
Main Authors: Pengmei, Zihan, Liu, Junyu, Shu, Yinan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:System specific neural force fields (NFFs) have gained popularity in computational chemistry. One of the most popular datasets as a bencharmk to develop NFF models is the MD17 dataset and its subsequent extension. These datasets comprise geometries from the equilibrium region of the ground electronic state potential energy surface, sampled from direct adiabatic dynamics. However, many chemical reactions involve significant molecular geometrical deformations, for example, bond breaking. Therefore, MD17 is inadequate to represent a chemical reaction. To address this limitation in MD17, we introduce a new dataset, called Extended Excited-state Molecular Dynamics (xxMD) dataset. The xxMD dataset involves geometries sampled from direct nonadiabatic dynamics, and the energies are computed at both multireference wavefunction theory and density functional theory. We show that the xxMD dataset involves diverse geometries which represent chemical reactions. Assessment of NFF models on xxMD dataset reveals significantly higher predictive errors than those reported for MD17 and its variants. This work underscores the challenges faced in crafting a generalizable NFF model with extrapolation capability.
ISSN:2052-4463
2052-4463
DOI:10.1038/s41597-024-03019-3