Loading…

Relationship of Thermal Treatment and Antioxidant Capacity in Cooked Foods

Most of the foods we eat undergo a cooking process before they are eaten. During such a process, the non-enzymatic browning occurs, which generates compounds such as furosine, 5-hydroxymethylfurfural (HMF) and furfural. These are considered markers of cookedness and can therefore be used as quality...

Full description

Saved in:
Bibliographic Details
Published in:Antioxidants 2022-11, Vol.11 (12), p.2324
Main Authors: Navajas-Porras, Beatriz, Pérez-Burillo, Sergio, Hinojosa-Nogueira, Daniel, Pastoriza, Silvia, Rufián-Henares, José Ángel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c506t-afc62ba4b1640cab261c1d183dc22944868b06e6246c5583b6d31d6f1f43edb83
container_end_page
container_issue 12
container_start_page 2324
container_title Antioxidants
container_volume 11
creator Navajas-Porras, Beatriz
Pérez-Burillo, Sergio
Hinojosa-Nogueira, Daniel
Pastoriza, Silvia
Rufián-Henares, José Ángel
description Most of the foods we eat undergo a cooking process before they are eaten. During such a process, the non-enzymatic browning occurs, which generates compounds such as furosine, 5-hydroxymethylfurfural (HMF) and furfural. These are considered markers of cookedness and can therefore be used as quality indicators. In this work, we study the production of these compounds in different foods (both of plant and animal origin) that are cooked with different techniques. Additionally, we investigate correlations between the production of these markers of cookedness and the antioxidant capacity produced after in vitro digestion and fermentation. We observe that, in general, cereals and vegetables are more thermally damaged. Toasting and frying produce the highest concentrations of Maillard compounds whereas boiling the lowest. Furosine content shows a significant positive correlation with in vitro digestion data in fried foods, and with fermentation in roasted foods. Furfural content shows a significant positive correlation with in vitro digestion results in roasted foods, specifically in the Folin-Ciocalteu method.
doi_str_mv 10.3390/antiox11122324
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_df450602ebea485796b2c1c1262c8de6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744223641</galeid><doaj_id>oai_doaj_org_article_df450602ebea485796b2c1c1262c8de6</doaj_id><sourcerecordid>A744223641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-afc62ba4b1640cab261c1d183dc22944868b06e6246c5583b6d31d6f1f43edb83</originalsourceid><addsrcrecordid>eNptkk1v1DAQhqMKRKvSK8cqEhcuW_yVSXJBWq0oFFVCQsvZcuzJrpfEXuwsav99Z9tSuqj2wdb4nefVjKco3nF2IWXLPpow-XjDORdCCnVUnAhWw0y2gr96dj8uznLeMFotlw1r3xTHEqpKVFKeFN9-4GCIEvLab8vYl8s1ptEM5TKhmUYMU2mCK-f3Tt6RY7kwW2P9dFv6UC5i_IWuvIzR5bfF694MGc8ez9Pi5-Xn5eLr7Pr7l6vF_HpmKwbTzPQWRGdUx0ExazoB3HLHG-msEK1SDTQdAwShwFZVIztwkjvoea8kuq6Rp8XVA9dFs9Hb5EeTbnU0Xt8HYlppkyZvB9SuV-TJBHZoVFPVLXTCkp0AYRuHQKxPD6ztrhvRWao3meEAevgS_Fqv4h_d1rVqeUuAD4-AFH_vME969NniMJiAcZe1qKuGU-NBkvT9f9JN3KVArdqrAKjWSvxTrQwV4EMfydfuoXpeK0U_DYqT6uIFFW2Ho7cxYO8p_lKCTTHnhP1TjZzp_TDpw2GihPPnnXmS_x0deQffoMO2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756658352</pqid></control><display><type>article</type><title>Relationship of Thermal Treatment and Antioxidant Capacity in Cooked Foods</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Navajas-Porras, Beatriz ; Pérez-Burillo, Sergio ; Hinojosa-Nogueira, Daniel ; Pastoriza, Silvia ; Rufián-Henares, José Ángel</creator><creatorcontrib>Navajas-Porras, Beatriz ; Pérez-Burillo, Sergio ; Hinojosa-Nogueira, Daniel ; Pastoriza, Silvia ; Rufián-Henares, José Ángel</creatorcontrib><description>Most of the foods we eat undergo a cooking process before they are eaten. During such a process, the non-enzymatic browning occurs, which generates compounds such as furosine, 5-hydroxymethylfurfural (HMF) and furfural. These are considered markers of cookedness and can therefore be used as quality indicators. In this work, we study the production of these compounds in different foods (both of plant and animal origin) that are cooked with different techniques. Additionally, we investigate correlations between the production of these markers of cookedness and the antioxidant capacity produced after in vitro digestion and fermentation. We observe that, in general, cereals and vegetables are more thermally damaged. Toasting and frying produce the highest concentrations of Maillard compounds whereas boiling the lowest. Furosine content shows a significant positive correlation with in vitro digestion data in fried foods, and with fermentation in roasted foods. Furfural content shows a significant positive correlation with in vitro digestion results in roasted foods, specifically in the Folin-Ciocalteu method.</description><identifier>ISSN: 2076-3921</identifier><identifier>EISSN: 2076-3921</identifier><identifier>DOI: 10.3390/antiox11122324</identifier><identifier>PMID: 36552533</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>antioxidant activity ; Antioxidants ; Cereals ; Chemicals ; Cookery ; Cooking ; Digestion ; Feces ; Fermentation ; Fermented food ; Food ; Food plants ; Fruits ; Furfural ; furosine ; Grain ; Health aspects ; HMF ; maillard reaction ; Proteins</subject><ispartof>Antioxidants, 2022-11, Vol.11 (12), p.2324</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c506t-afc62ba4b1640cab261c1d183dc22944868b06e6246c5583b6d31d6f1f43edb83</cites><orcidid>0000-0001-6398-7496 ; 0000-0002-1428-4353 ; 0000-0002-2604-3303 ; 0000-0001-6211-5434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756658352/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756658352?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36552533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Navajas-Porras, Beatriz</creatorcontrib><creatorcontrib>Pérez-Burillo, Sergio</creatorcontrib><creatorcontrib>Hinojosa-Nogueira, Daniel</creatorcontrib><creatorcontrib>Pastoriza, Silvia</creatorcontrib><creatorcontrib>Rufián-Henares, José Ángel</creatorcontrib><title>Relationship of Thermal Treatment and Antioxidant Capacity in Cooked Foods</title><title>Antioxidants</title><addtitle>Antioxidants (Basel)</addtitle><description>Most of the foods we eat undergo a cooking process before they are eaten. During such a process, the non-enzymatic browning occurs, which generates compounds such as furosine, 5-hydroxymethylfurfural (HMF) and furfural. These are considered markers of cookedness and can therefore be used as quality indicators. In this work, we study the production of these compounds in different foods (both of plant and animal origin) that are cooked with different techniques. Additionally, we investigate correlations between the production of these markers of cookedness and the antioxidant capacity produced after in vitro digestion and fermentation. We observe that, in general, cereals and vegetables are more thermally damaged. Toasting and frying produce the highest concentrations of Maillard compounds whereas boiling the lowest. Furosine content shows a significant positive correlation with in vitro digestion data in fried foods, and with fermentation in roasted foods. Furfural content shows a significant positive correlation with in vitro digestion results in roasted foods, specifically in the Folin-Ciocalteu method.</description><subject>antioxidant activity</subject><subject>Antioxidants</subject><subject>Cereals</subject><subject>Chemicals</subject><subject>Cookery</subject><subject>Cooking</subject><subject>Digestion</subject><subject>Feces</subject><subject>Fermentation</subject><subject>Fermented food</subject><subject>Food</subject><subject>Food plants</subject><subject>Fruits</subject><subject>Furfural</subject><subject>furosine</subject><subject>Grain</subject><subject>Health aspects</subject><subject>HMF</subject><subject>maillard reaction</subject><subject>Proteins</subject><issn>2076-3921</issn><issn>2076-3921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhqMKRKvSK8cqEhcuW_yVSXJBWq0oFFVCQsvZcuzJrpfEXuwsav99Z9tSuqj2wdb4nefVjKco3nF2IWXLPpow-XjDORdCCnVUnAhWw0y2gr96dj8uznLeMFotlw1r3xTHEqpKVFKeFN9-4GCIEvLab8vYl8s1ptEM5TKhmUYMU2mCK-f3Tt6RY7kwW2P9dFv6UC5i_IWuvIzR5bfF694MGc8ez9Pi5-Xn5eLr7Pr7l6vF_HpmKwbTzPQWRGdUx0ExazoB3HLHG-msEK1SDTQdAwShwFZVIztwkjvoea8kuq6Rp8XVA9dFs9Hb5EeTbnU0Xt8HYlppkyZvB9SuV-TJBHZoVFPVLXTCkp0AYRuHQKxPD6ztrhvRWao3meEAevgS_Fqv4h_d1rVqeUuAD4-AFH_vME969NniMJiAcZe1qKuGU-NBkvT9f9JN3KVArdqrAKjWSvxTrQwV4EMfydfuoXpeK0U_DYqT6uIFFW2Ho7cxYO8p_lKCTTHnhP1TjZzp_TDpw2GihPPnnXmS_x0deQffoMO2</recordid><startdate>20221124</startdate><enddate>20221124</enddate><creator>Navajas-Porras, Beatriz</creator><creator>Pérez-Burillo, Sergio</creator><creator>Hinojosa-Nogueira, Daniel</creator><creator>Pastoriza, Silvia</creator><creator>Rufián-Henares, José Ángel</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7T5</scope><scope>7TO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6398-7496</orcidid><orcidid>https://orcid.org/0000-0002-1428-4353</orcidid><orcidid>https://orcid.org/0000-0002-2604-3303</orcidid><orcidid>https://orcid.org/0000-0001-6211-5434</orcidid></search><sort><creationdate>20221124</creationdate><title>Relationship of Thermal Treatment and Antioxidant Capacity in Cooked Foods</title><author>Navajas-Porras, Beatriz ; Pérez-Burillo, Sergio ; Hinojosa-Nogueira, Daniel ; Pastoriza, Silvia ; Rufián-Henares, José Ángel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-afc62ba4b1640cab261c1d183dc22944868b06e6246c5583b6d31d6f1f43edb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>antioxidant activity</topic><topic>Antioxidants</topic><topic>Cereals</topic><topic>Chemicals</topic><topic>Cookery</topic><topic>Cooking</topic><topic>Digestion</topic><topic>Feces</topic><topic>Fermentation</topic><topic>Fermented food</topic><topic>Food</topic><topic>Food plants</topic><topic>Fruits</topic><topic>Furfural</topic><topic>furosine</topic><topic>Grain</topic><topic>Health aspects</topic><topic>HMF</topic><topic>maillard reaction</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navajas-Porras, Beatriz</creatorcontrib><creatorcontrib>Pérez-Burillo, Sergio</creatorcontrib><creatorcontrib>Hinojosa-Nogueira, Daniel</creatorcontrib><creatorcontrib>Pastoriza, Silvia</creatorcontrib><creatorcontrib>Rufián-Henares, José Ángel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Antioxidants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navajas-Porras, Beatriz</au><au>Pérez-Burillo, Sergio</au><au>Hinojosa-Nogueira, Daniel</au><au>Pastoriza, Silvia</au><au>Rufián-Henares, José Ángel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship of Thermal Treatment and Antioxidant Capacity in Cooked Foods</atitle><jtitle>Antioxidants</jtitle><addtitle>Antioxidants (Basel)</addtitle><date>2022-11-24</date><risdate>2022</risdate><volume>11</volume><issue>12</issue><spage>2324</spage><pages>2324-</pages><issn>2076-3921</issn><eissn>2076-3921</eissn><abstract>Most of the foods we eat undergo a cooking process before they are eaten. During such a process, the non-enzymatic browning occurs, which generates compounds such as furosine, 5-hydroxymethylfurfural (HMF) and furfural. These are considered markers of cookedness and can therefore be used as quality indicators. In this work, we study the production of these compounds in different foods (both of plant and animal origin) that are cooked with different techniques. Additionally, we investigate correlations between the production of these markers of cookedness and the antioxidant capacity produced after in vitro digestion and fermentation. We observe that, in general, cereals and vegetables are more thermally damaged. Toasting and frying produce the highest concentrations of Maillard compounds whereas boiling the lowest. Furosine content shows a significant positive correlation with in vitro digestion data in fried foods, and with fermentation in roasted foods. Furfural content shows a significant positive correlation with in vitro digestion results in roasted foods, specifically in the Folin-Ciocalteu method.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36552533</pmid><doi>10.3390/antiox11122324</doi><orcidid>https://orcid.org/0000-0001-6398-7496</orcidid><orcidid>https://orcid.org/0000-0002-1428-4353</orcidid><orcidid>https://orcid.org/0000-0002-2604-3303</orcidid><orcidid>https://orcid.org/0000-0001-6211-5434</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3921
ispartof Antioxidants, 2022-11, Vol.11 (12), p.2324
issn 2076-3921
2076-3921
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_df450602ebea485796b2c1c1262c8de6
source Publicly Available Content Database; PubMed Central
subjects antioxidant activity
Antioxidants
Cereals
Chemicals
Cookery
Cooking
Digestion
Feces
Fermentation
Fermented food
Food
Food plants
Fruits
Furfural
furosine
Grain
Health aspects
HMF
maillard reaction
Proteins
title Relationship of Thermal Treatment and Antioxidant Capacity in Cooked Foods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20of%20Thermal%20Treatment%20and%20Antioxidant%20Capacity%20in%20Cooked%20Foods&rft.jtitle=Antioxidants&rft.au=Navajas-Porras,%20Beatriz&rft.date=2022-11-24&rft.volume=11&rft.issue=12&rft.spage=2324&rft.pages=2324-&rft.issn=2076-3921&rft.eissn=2076-3921&rft_id=info:doi/10.3390/antiox11122324&rft_dat=%3Cgale_doaj_%3EA744223641%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c506t-afc62ba4b1640cab261c1d183dc22944868b06e6246c5583b6d31d6f1f43edb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756658352&rft_id=info:pmid/36552533&rft_galeid=A744223641&rfr_iscdi=true