Loading…
The Genomic Shock Hypothesis: Genetic and Epigenetic Alterations of Transposable Elements after Interspecific Hybridization in Plants
Transposable elements (TEs) are major components of plant genomes with the ability to change their position in the genome or to create new copies of themselves in other positions in the genome. These can cause gene disruption and large-scale genomic alterations, including inversions, deletions, and...
Saved in:
Published in: | Epigenomes 2023-12, Vol.8 (1), p.2 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c561t-726c8a15cacf1fa1892faaa290e25e7d82f0ebe17165d734d86879130c296373 |
---|---|
cites | cdi_FETCH-LOGICAL-c561t-726c8a15cacf1fa1892faaa290e25e7d82f0ebe17165d734d86879130c296373 |
container_end_page | |
container_issue | 1 |
container_start_page | 2 |
container_title | Epigenomes |
container_volume | 8 |
creator | de Tomás, Carlos Vicient, Carlos M |
description | Transposable elements (TEs) are major components of plant genomes with the ability to change their position in the genome or to create new copies of themselves in other positions in the genome. These can cause gene disruption and large-scale genomic alterations, including inversions, deletions, and duplications. Host organisms have evolved a set of mechanisms to suppress TE activity and counter the threat that they pose to genome integrity. These includes the epigenetic silencing of TEs mediated by a process of RNA-directed DNA methylation (RdDM). In most cases, the silencing machinery is very efficient for the vast majority of TEs. However, there are specific circumstances in which TEs can evade such silencing mechanisms, for example, a variety of biotic and abiotic stresses or in vitro culture. Hybridization is also proposed as an inductor of TE proliferation. In fact, the discoverer of the transposons, Barbara McClintock, first hypothesized that interspecific hybridization provides a "genomic shock" that inhibits the TE control mechanisms leading to the mobilization of TEs. However, the studies carried out on this topic have yielded diverse results, showing in some cases a total absence of mobilization or being limited to only some TE families. Here, we review the current knowledge about the impact of interspecific hybridization on TEs in plants and the possible implications of changes in the epigenetic mechanisms. |
doi_str_mv | 10.3390/epigenomes8010002 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_df5371c14cb244d7a8ee695f97b5d1fd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788246778</galeid><doaj_id>oai_doaj_org_article_df5371c14cb244d7a8ee695f97b5d1fd</doaj_id><sourcerecordid>A788246778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-726c8a15cacf1fa1892faaa290e25e7d82f0ebe17165d734d86879130c296373</originalsourceid><addsrcrecordid>eNptUk1vEzEQXSEQrUp_ABdkiQuXtP5Yr71cUFSFJlIlkMjd8trjxGGzXuxNpXDnf-NN2tIAsuSPmffeaMavKN4SfMVYja-h9yvowhaSxARjTF8U5xQLPikrzl8-u58VlyltRgSWQkr8ujhjkpZC0Pq8-LVcA7oddbxB39bBfEfzfR-GNSSfPo4ZGHJGdxbNDgUPz2k7QNSDD11CwaFl1F3qQ9JNC2jWwha6ISHtMggturynHox3mTjfN9Fb__PARb5DX1udsW-KV063CS4fzoti-Xm2vJlP7r7cLm6mdxPDKzJMBK2M1IQbbRxxmsiaOq01rTFQDsJK6jA0QASpuBWstLKSoiYMG1pXTLCLYnGUtUFvVB_9Vse9CtqrQyDEldIx99eCso4zQQwpTUPL0gotAaqau1o03BJns9ano1a_a7ZgTW456vZE9DTT-bVahXtFcP4vXsqs8OFBIYYfO0iD2vpkoM0TgbBLitZEcF6TsszQ939BN2EXuzwqxTAmpWCE0T-olc4d-M6FXNiMomqaP56WlRBj2av_oPKykD0QOnA-x08I5EgwMaQUwT01SbAaraj-sWLmvHs-nSfGo_HYb2fQ3Tc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3001473132</pqid></control><display><type>article</type><title>The Genomic Shock Hypothesis: Genetic and Epigenetic Alterations of Transposable Elements after Interspecific Hybridization in Plants</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (PMC)</source><creator>de Tomás, Carlos ; Vicient, Carlos M</creator><creatorcontrib>de Tomás, Carlos ; Vicient, Carlos M</creatorcontrib><description>Transposable elements (TEs) are major components of plant genomes with the ability to change their position in the genome or to create new copies of themselves in other positions in the genome. These can cause gene disruption and large-scale genomic alterations, including inversions, deletions, and duplications. Host organisms have evolved a set of mechanisms to suppress TE activity and counter the threat that they pose to genome integrity. These includes the epigenetic silencing of TEs mediated by a process of RNA-directed DNA methylation (RdDM). In most cases, the silencing machinery is very efficient for the vast majority of TEs. However, there are specific circumstances in which TEs can evade such silencing mechanisms, for example, a variety of biotic and abiotic stresses or in vitro culture. Hybridization is also proposed as an inductor of TE proliferation. In fact, the discoverer of the transposons, Barbara McClintock, first hypothesized that interspecific hybridization provides a "genomic shock" that inhibits the TE control mechanisms leading to the mobilization of TEs. However, the studies carried out on this topic have yielded diverse results, showing in some cases a total absence of mobilization or being limited to only some TE families. Here, we review the current knowledge about the impact of interspecific hybridization on TEs in plants and the possible implications of changes in the epigenetic mechanisms.</description><identifier>ISSN: 2075-4655</identifier><identifier>EISSN: 2075-4655</identifier><identifier>DOI: 10.3390/epigenomes8010002</identifier><identifier>PMID: 38247729</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Chromosomes ; DNA methylation ; DNA sequencing ; Epigenetic inheritance ; Epigenetics ; Gene disruption ; Genomes ; genomic shock ; Genomics ; Health aspects ; Hybridization ; Interspecific hybridization ; Methods ; Methylation ; MITE ; Mutation ; Nucleotide sequencing ; Plant genetics ; retrotransposon ; Review ; RNA polymerase ; transposable element ; Transposons ; Viruses</subject><ispartof>Epigenomes, 2023-12, Vol.8 (1), p.2</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-726c8a15cacf1fa1892faaa290e25e7d82f0ebe17165d734d86879130c296373</citedby><cites>FETCH-LOGICAL-c561t-726c8a15cacf1fa1892faaa290e25e7d82f0ebe17165d734d86879130c296373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3001473132/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3001473132?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38247729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Tomás, Carlos</creatorcontrib><creatorcontrib>Vicient, Carlos M</creatorcontrib><title>The Genomic Shock Hypothesis: Genetic and Epigenetic Alterations of Transposable Elements after Interspecific Hybridization in Plants</title><title>Epigenomes</title><addtitle>Epigenomes</addtitle><description>Transposable elements (TEs) are major components of plant genomes with the ability to change their position in the genome or to create new copies of themselves in other positions in the genome. These can cause gene disruption and large-scale genomic alterations, including inversions, deletions, and duplications. Host organisms have evolved a set of mechanisms to suppress TE activity and counter the threat that they pose to genome integrity. These includes the epigenetic silencing of TEs mediated by a process of RNA-directed DNA methylation (RdDM). In most cases, the silencing machinery is very efficient for the vast majority of TEs. However, there are specific circumstances in which TEs can evade such silencing mechanisms, for example, a variety of biotic and abiotic stresses or in vitro culture. Hybridization is also proposed as an inductor of TE proliferation. In fact, the discoverer of the transposons, Barbara McClintock, first hypothesized that interspecific hybridization provides a "genomic shock" that inhibits the TE control mechanisms leading to the mobilization of TEs. However, the studies carried out on this topic have yielded diverse results, showing in some cases a total absence of mobilization or being limited to only some TE families. Here, we review the current knowledge about the impact of interspecific hybridization on TEs in plants and the possible implications of changes in the epigenetic mechanisms.</description><subject>Analysis</subject><subject>Chromosomes</subject><subject>DNA methylation</subject><subject>DNA sequencing</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Gene disruption</subject><subject>Genomes</subject><subject>genomic shock</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Hybridization</subject><subject>Interspecific hybridization</subject><subject>Methods</subject><subject>Methylation</subject><subject>MITE</subject><subject>Mutation</subject><subject>Nucleotide sequencing</subject><subject>Plant genetics</subject><subject>retrotransposon</subject><subject>Review</subject><subject>RNA polymerase</subject><subject>transposable element</subject><subject>Transposons</subject><subject>Viruses</subject><issn>2075-4655</issn><issn>2075-4655</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1vEzEQXSEQrUp_ABdkiQuXtP5Yr71cUFSFJlIlkMjd8trjxGGzXuxNpXDnf-NN2tIAsuSPmffeaMavKN4SfMVYja-h9yvowhaSxARjTF8U5xQLPikrzl8-u58VlyltRgSWQkr8ujhjkpZC0Pq8-LVcA7oddbxB39bBfEfzfR-GNSSfPo4ZGHJGdxbNDgUPz2k7QNSDD11CwaFl1F3qQ9JNC2jWwha6ISHtMggturynHox3mTjfN9Fb__PARb5DX1udsW-KV063CS4fzoti-Xm2vJlP7r7cLm6mdxPDKzJMBK2M1IQbbRxxmsiaOq01rTFQDsJK6jA0QASpuBWstLKSoiYMG1pXTLCLYnGUtUFvVB_9Vse9CtqrQyDEldIx99eCso4zQQwpTUPL0gotAaqau1o03BJns9ano1a_a7ZgTW456vZE9DTT-bVahXtFcP4vXsqs8OFBIYYfO0iD2vpkoM0TgbBLitZEcF6TsszQ939BN2EXuzwqxTAmpWCE0T-olc4d-M6FXNiMomqaP56WlRBj2av_oPKykD0QOnA-x08I5EgwMaQUwT01SbAaraj-sWLmvHs-nSfGo_HYb2fQ3Tc</recordid><startdate>20231227</startdate><enddate>20231227</enddate><creator>de Tomás, Carlos</creator><creator>Vicient, Carlos M</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20231227</creationdate><title>The Genomic Shock Hypothesis: Genetic and Epigenetic Alterations of Transposable Elements after Interspecific Hybridization in Plants</title><author>de Tomás, Carlos ; Vicient, Carlos M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-726c8a15cacf1fa1892faaa290e25e7d82f0ebe17165d734d86879130c296373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Chromosomes</topic><topic>DNA methylation</topic><topic>DNA sequencing</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Gene disruption</topic><topic>Genomes</topic><topic>genomic shock</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Hybridization</topic><topic>Interspecific hybridization</topic><topic>Methods</topic><topic>Methylation</topic><topic>MITE</topic><topic>Mutation</topic><topic>Nucleotide sequencing</topic><topic>Plant genetics</topic><topic>retrotransposon</topic><topic>Review</topic><topic>RNA polymerase</topic><topic>transposable element</topic><topic>Transposons</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Tomás, Carlos</creatorcontrib><creatorcontrib>Vicient, Carlos M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Epigenomes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Tomás, Carlos</au><au>Vicient, Carlos M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Genomic Shock Hypothesis: Genetic and Epigenetic Alterations of Transposable Elements after Interspecific Hybridization in Plants</atitle><jtitle>Epigenomes</jtitle><addtitle>Epigenomes</addtitle><date>2023-12-27</date><risdate>2023</risdate><volume>8</volume><issue>1</issue><spage>2</spage><pages>2-</pages><issn>2075-4655</issn><eissn>2075-4655</eissn><abstract>Transposable elements (TEs) are major components of plant genomes with the ability to change their position in the genome or to create new copies of themselves in other positions in the genome. These can cause gene disruption and large-scale genomic alterations, including inversions, deletions, and duplications. Host organisms have evolved a set of mechanisms to suppress TE activity and counter the threat that they pose to genome integrity. These includes the epigenetic silencing of TEs mediated by a process of RNA-directed DNA methylation (RdDM). In most cases, the silencing machinery is very efficient for the vast majority of TEs. However, there are specific circumstances in which TEs can evade such silencing mechanisms, for example, a variety of biotic and abiotic stresses or in vitro culture. Hybridization is also proposed as an inductor of TE proliferation. In fact, the discoverer of the transposons, Barbara McClintock, first hypothesized that interspecific hybridization provides a "genomic shock" that inhibits the TE control mechanisms leading to the mobilization of TEs. However, the studies carried out on this topic have yielded diverse results, showing in some cases a total absence of mobilization or being limited to only some TE families. Here, we review the current knowledge about the impact of interspecific hybridization on TEs in plants and the possible implications of changes in the epigenetic mechanisms.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38247729</pmid><doi>10.3390/epigenomes8010002</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4655 |
ispartof | Epigenomes, 2023-12, Vol.8 (1), p.2 |
issn | 2075-4655 2075-4655 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_df5371c14cb244d7a8ee695f97b5d1fd |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (PMC) |
subjects | Analysis Chromosomes DNA methylation DNA sequencing Epigenetic inheritance Epigenetics Gene disruption Genomes genomic shock Genomics Health aspects Hybridization Interspecific hybridization Methods Methylation MITE Mutation Nucleotide sequencing Plant genetics retrotransposon Review RNA polymerase transposable element Transposons Viruses |
title | The Genomic Shock Hypothesis: Genetic and Epigenetic Alterations of Transposable Elements after Interspecific Hybridization in Plants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Genomic%20Shock%20Hypothesis:%20Genetic%20and%20Epigenetic%20Alterations%20of%20Transposable%20Elements%20after%20Interspecific%20Hybridization%20in%20Plants&rft.jtitle=Epigenomes&rft.au=de%20Tom%C3%A1s,%20Carlos&rft.date=2023-12-27&rft.volume=8&rft.issue=1&rft.spage=2&rft.pages=2-&rft.issn=2075-4655&rft.eissn=2075-4655&rft_id=info:doi/10.3390/epigenomes8010002&rft_dat=%3Cgale_doaj_%3EA788246778%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c561t-726c8a15cacf1fa1892faaa290e25e7d82f0ebe17165d734d86879130c296373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3001473132&rft_id=info:pmid/38247729&rft_galeid=A788246778&rfr_iscdi=true |