Loading…

A Systematic Review of In Vitro Studies Using Microchip Platforms for Identifying Periodontopathogens from the Red Complex

Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola, collectively recognized as periodontopathogens within the red complex, have been extensively studied in clinical samples collected from individuals with periodontitis. A lab-on-a-chip (LOC) is a miniature mechanism that integra...

Full description

Saved in:
Bibliographic Details
Published in:Dentistry journal 2023-10, Vol.11 (11), p.245
Main Authors: Ardila, Carlos M, Jiménez-Arbeláez, Gustavo A, Vivares-Builes, Annie Marcela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola, collectively recognized as periodontopathogens within the red complex, have been extensively studied in clinical samples collected from individuals with periodontitis. A lab-on-a-chip (LOC) is a miniature mechanism that integrates various laboratory operations onto a single microchip or a small-scale platform. This systematic review evaluates the application of LOC technology in identifying microorganisms from the red complex. This study adhered to PRISMA recommendations, and the review process encompassed several databases. In the electronic search, a total of 58 reports were found, and ultimately, 10 studies were considered relevant for inclusion. All these studies described effective, rapid, and reliable LOC systems for detecting and amplifying P. gingivalis, T. forsythia, and T. denticola. Compared to traditional methods, the LOC approach demonstrated minimal reagent requirements. Additionally, the results indicated that the amplification process took approximately 2 to 8 min, while detection could be completed in as little as 2 min and 40 s, resulting in a total experimental duration of around 11 min. Integrating miniaturization, speed, accuracy, and automation within microchip platforms makes them promising tools for detecting and amplifying microorganisms associated with the red complex in periodontal diseases.
ISSN:2304-6767
2304-6767
DOI:10.3390/dj11110245