Loading…

Adaptive sampling of homogenized cross-sections with multi-output gaussian processes

In another talk submitted to this conference, we presented an efficient new framework based on multi-outputs gaussian processes (MOGP) for the interpolation of few-groups homogenized cross-sections (HXS) inside deterministic core simulators. We indicated that this methodology authorized a principled...

Full description

Saved in:
Bibliographic Details
Published in:EPJ Web of conferences 2024, Vol.302, p.2010
Main Authors: Truffinet, Olivier, Ammar, Karim, Argaud, Jean-Philippe, Gérard Castaing, Nicolas, Bouriquet, Bertrand
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1570-3c459122f44fe487199b72dc84eddaa92da88d68289ccf6f285921907fe001d93
container_end_page
container_issue
container_start_page 2010
container_title EPJ Web of conferences
container_volume 302
creator Truffinet, Olivier
Ammar, Karim
Argaud, Jean-Philippe
Gérard Castaing, Nicolas
Bouriquet, Bertrand
description In another talk submitted to this conference, we presented an efficient new framework based on multi-outputs gaussian processes (MOGP) for the interpolation of few-groups homogenized cross-sections (HXS) inside deterministic core simulators. We indicated that this methodology authorized a principled selection of interpolation points through adaptive sampling . We here develop this idea by trying simple sampling schemes on our problem. In particular, we compare sample scoring functions with and without integration of leave-one-out errors, and obtained with single-output and multi-output gaussian process models. We test these methods on a realistic PWR assembly with gadolinium-added fuel rods, comparing them with non-adaptive supports. Results are promising, as the sampling algorithms allow to significantly reduce the size of interpolation supports with almost preserved accuracy. However, they exhibit phenomena of instability and stagnation, which calls for further investigation of the sampling dynamics and trying other scoring functions for the selection of samples.
doi_str_mv 10.1051/epjconf/202430202010
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_df793ee9cfb34452940718587ef4a923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_df793ee9cfb34452940718587ef4a923</doaj_id><sourcerecordid>oai_doaj_org_article_df793ee9cfb34452940718587ef4a923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1570-3c459122f44fe487199b72dc84eddaa92da88d68289ccf6f285921907fe001d93</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRUVpoSHNH3ThH3AzejiWliH0BYFuUuhOKNLIUbAtYzkt7dfXTULJLGYuszjDHELuKTxQKOgcu72NrZ8zYILD2IHCFZkwCpADFR_XF_mWzFLaw1hcKV4sJmSzdKYbwidmyTRdHdoqiz7bxSZW2IYfdJntY0p5QjuE2KbsKwy7rDnUQ8jjYegOQ1aZQ0rBtFnXR4spYbojN97UCWfnOSXvT4-b1Uu-fnt-XS3XuaVFCTm3olCUMS-ERyFLqtS2ZM5Kgc4Zo5gzUrqFZFJZ6xeeyUIxqqD0CECd4lPyeuK6aPa660Nj-m8dTdDHRewrbfoh2Bq186XiiMr6LReiYEpASWUhS_RivMRHljixjv_26P95FPSfaH0WrS9F8182TnOh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive sampling of homogenized cross-sections with multi-output gaussian processes</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Truffinet, Olivier ; Ammar, Karim ; Argaud, Jean-Philippe ; Gérard Castaing, Nicolas ; Bouriquet, Bertrand</creator><contributor>Saikali, E. ; Diop, C.M. ; Zoia, A.</contributor><creatorcontrib>Truffinet, Olivier ; Ammar, Karim ; Argaud, Jean-Philippe ; Gérard Castaing, Nicolas ; Bouriquet, Bertrand ; Saikali, E. ; Diop, C.M. ; Zoia, A.</creatorcontrib><description>In another talk submitted to this conference, we presented an efficient new framework based on multi-outputs gaussian processes (MOGP) for the interpolation of few-groups homogenized cross-sections (HXS) inside deterministic core simulators. We indicated that this methodology authorized a principled selection of interpolation points through adaptive sampling . We here develop this idea by trying simple sampling schemes on our problem. In particular, we compare sample scoring functions with and without integration of leave-one-out errors, and obtained with single-output and multi-output gaussian process models. We test these methods on a realistic PWR assembly with gadolinium-added fuel rods, comparing them with non-adaptive supports. Results are promising, as the sampling algorithms allow to significantly reduce the size of interpolation supports with almost preserved accuracy. However, they exhibit phenomena of instability and stagnation, which calls for further investigation of the sampling dynamics and trying other scoring functions for the selection of samples.</description><identifier>ISSN: 2100-014X</identifier><identifier>EISSN: 2100-014X</identifier><identifier>DOI: 10.1051/epjconf/202430202010</identifier><language>eng</language><publisher>EDP Sciences</publisher><ispartof>EPJ Web of conferences, 2024, Vol.302, p.2010</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1570-3c459122f44fe487199b72dc84eddaa92da88d68289ccf6f285921907fe001d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Saikali, E.</contributor><contributor>Diop, C.M.</contributor><contributor>Zoia, A.</contributor><creatorcontrib>Truffinet, Olivier</creatorcontrib><creatorcontrib>Ammar, Karim</creatorcontrib><creatorcontrib>Argaud, Jean-Philippe</creatorcontrib><creatorcontrib>Gérard Castaing, Nicolas</creatorcontrib><creatorcontrib>Bouriquet, Bertrand</creatorcontrib><title>Adaptive sampling of homogenized cross-sections with multi-output gaussian processes</title><title>EPJ Web of conferences</title><description>In another talk submitted to this conference, we presented an efficient new framework based on multi-outputs gaussian processes (MOGP) for the interpolation of few-groups homogenized cross-sections (HXS) inside deterministic core simulators. We indicated that this methodology authorized a principled selection of interpolation points through adaptive sampling . We here develop this idea by trying simple sampling schemes on our problem. In particular, we compare sample scoring functions with and without integration of leave-one-out errors, and obtained with single-output and multi-output gaussian process models. We test these methods on a realistic PWR assembly with gadolinium-added fuel rods, comparing them with non-adaptive supports. Results are promising, as the sampling algorithms allow to significantly reduce the size of interpolation supports with almost preserved accuracy. However, they exhibit phenomena of instability and stagnation, which calls for further investigation of the sampling dynamics and trying other scoring functions for the selection of samples.</description><issn>2100-014X</issn><issn>2100-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkMtqwzAQRUVpoSHNH3ThH3AzejiWliH0BYFuUuhOKNLIUbAtYzkt7dfXTULJLGYuszjDHELuKTxQKOgcu72NrZ8zYILD2IHCFZkwCpADFR_XF_mWzFLaw1hcKV4sJmSzdKYbwidmyTRdHdoqiz7bxSZW2IYfdJntY0p5QjuE2KbsKwy7rDnUQ8jjYegOQ1aZQ0rBtFnXR4spYbojN97UCWfnOSXvT4-b1Uu-fnt-XS3XuaVFCTm3olCUMS-ERyFLqtS2ZM5Kgc4Zo5gzUrqFZFJZ6xeeyUIxqqD0CECd4lPyeuK6aPa660Nj-m8dTdDHRewrbfoh2Bq186XiiMr6LReiYEpASWUhS_RivMRHljixjv_26P95FPSfaH0WrS9F8182TnOh</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Truffinet, Olivier</creator><creator>Ammar, Karim</creator><creator>Argaud, Jean-Philippe</creator><creator>Gérard Castaing, Nicolas</creator><creator>Bouriquet, Bertrand</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2024</creationdate><title>Adaptive sampling of homogenized cross-sections with multi-output gaussian processes</title><author>Truffinet, Olivier ; Ammar, Karim ; Argaud, Jean-Philippe ; Gérard Castaing, Nicolas ; Bouriquet, Bertrand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1570-3c459122f44fe487199b72dc84eddaa92da88d68289ccf6f285921907fe001d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truffinet, Olivier</creatorcontrib><creatorcontrib>Ammar, Karim</creatorcontrib><creatorcontrib>Argaud, Jean-Philippe</creatorcontrib><creatorcontrib>Gérard Castaing, Nicolas</creatorcontrib><creatorcontrib>Bouriquet, Bertrand</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>EPJ Web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truffinet, Olivier</au><au>Ammar, Karim</au><au>Argaud, Jean-Philippe</au><au>Gérard Castaing, Nicolas</au><au>Bouriquet, Bertrand</au><au>Saikali, E.</au><au>Diop, C.M.</au><au>Zoia, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive sampling of homogenized cross-sections with multi-output gaussian processes</atitle><jtitle>EPJ Web of conferences</jtitle><date>2024</date><risdate>2024</risdate><volume>302</volume><spage>2010</spage><pages>2010-</pages><issn>2100-014X</issn><eissn>2100-014X</eissn><abstract>In another talk submitted to this conference, we presented an efficient new framework based on multi-outputs gaussian processes (MOGP) for the interpolation of few-groups homogenized cross-sections (HXS) inside deterministic core simulators. We indicated that this methodology authorized a principled selection of interpolation points through adaptive sampling . We here develop this idea by trying simple sampling schemes on our problem. In particular, we compare sample scoring functions with and without integration of leave-one-out errors, and obtained with single-output and multi-output gaussian process models. We test these methods on a realistic PWR assembly with gadolinium-added fuel rods, comparing them with non-adaptive supports. Results are promising, as the sampling algorithms allow to significantly reduce the size of interpolation supports with almost preserved accuracy. However, they exhibit phenomena of instability and stagnation, which calls for further investigation of the sampling dynamics and trying other scoring functions for the selection of samples.</abstract><pub>EDP Sciences</pub><doi>10.1051/epjconf/202430202010</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2100-014X
ispartof EPJ Web of conferences, 2024, Vol.302, p.2010
issn 2100-014X
2100-014X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_df793ee9cfb34452940718587ef4a923
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
title Adaptive sampling of homogenized cross-sections with multi-output gaussian processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20sampling%20of%20homogenized%20cross-sections%20with%20multi-output%20gaussian%20processes&rft.jtitle=EPJ%20Web%20of%20conferences&rft.au=Truffinet,%20Olivier&rft.date=2024&rft.volume=302&rft.spage=2010&rft.pages=2010-&rft.issn=2100-014X&rft.eissn=2100-014X&rft_id=info:doi/10.1051/epjconf/202430202010&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_df793ee9cfb34452940718587ef4a923%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1570-3c459122f44fe487199b72dc84eddaa92da88d68289ccf6f285921907fe001d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true