Loading…

Cryo-EM structure of the Saccharomyces cerevisiae Rpd3L histone deacetylase complex

The Rpd3L histone deacetylase (HDAC) complex is an ancient 12-subunit complex conserved in a broad range of eukaryotes that performs localized deacetylation at or near sites of recruitment by DNA-bound factors. Here we describe the cryo-EM structure of this prototypical HDAC complex that is characte...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-05, Vol.14 (1), p.3061-3061, Article 3061
Main Authors: Patel, Avinash B., Qing, Jinkang, Tam, Kelly H., Zaman, Sara, Luiso, Maria, Radhakrishnan, Ishwar, He, Yuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c568t-b2f9dfbf113119ce357ad8c4833cb6479be35024c62346039c79edbacec21b5d3
cites cdi_FETCH-LOGICAL-c568t-b2f9dfbf113119ce357ad8c4833cb6479be35024c62346039c79edbacec21b5d3
container_end_page 3061
container_issue 1
container_start_page 3061
container_title Nature communications
container_volume 14
creator Patel, Avinash B.
Qing, Jinkang
Tam, Kelly H.
Zaman, Sara
Luiso, Maria
Radhakrishnan, Ishwar
He, Yuan
description The Rpd3L histone deacetylase (HDAC) complex is an ancient 12-subunit complex conserved in a broad range of eukaryotes that performs localized deacetylation at or near sites of recruitment by DNA-bound factors. Here we describe the cryo-EM structure of this prototypical HDAC complex that is characterized by as many as seven subunits performing scaffolding roles for the tight integration of the only catalytic subunit, Rpd3. The principal scaffolding protein, Sin3, along with Rpd3 and the histone chaperone, Ume1, are present in two copies, with each copy organized into separate lobes of an asymmetric dimeric molecular assembly. The active site of one Rpd3 is completely occluded by a leucine side chain of Rxt2, while the tips of the two lobes and the more peripherally associated subunits exhibit varying levels of flexibility and positional disorder. The structure reveals unexpected structural homology/analogy between unrelated subunits in the fungal and mammalian complexes and provides a foundation for deeper interrogations of structure, biology, and mechanism of these complexes, as well as for the discovery of HDAC complex-specific inhibitors. The Rpd3L HDAC complex is an ancient chromatin-modifying complex found in diverse eukaryotes. Here, authors describe the cryo-EM structure of the yeast complex and show that key features are preserved in the human complex.
doi_str_mv 10.1038/s41467-023-38687-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_df7b4b9e14b14cddbb0911cd77c97937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_df7b4b9e14b14cddbb0911cd77c97937</doaj_id><sourcerecordid>2820029546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-b2f9dfbf113119ce357ad8c4833cb6479be35024c62346039c79edbacec21b5d3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAIrhwCfgrcXxCaFWg0iIkCmfLHk82WWXjxXaqbn89blNKywFfbM08887YfoviJSXvKOHt-yioaGRFGK9427Syun5SHDMiaEUl408fnI-K0xi3JC-uaCvE8-KISyZEq9hxcbEKB1-dfS1jCjOkOWDpuzL1WF4YgN4EvzsAxhIw4OUQB4Pl973j67IfYvITlg4NYDqMJmIJfrcf8epF8awzY8TTu_2k-Pnp7MfqS7X-9vl89XFdQd20qbKsU66zHaWcUgXIa2lcC6LlHGwjpLI5RJiAhnHR5OFBKnQ2twNGbe34SXG-6Dpvtnofhp0JB-3NoG8DPmy0CWmAEbXrpBVWIRWWCnDOWqIoBSclKKm4zFofFq39bHfoAKcUzPhI9HFmGnq98ZeaEsaEqtus8HpR8DENOsKQEHrw04SQNBMs_5fK0Nu7NsH_mjEmvRsi4DiaCf0cNWsZIUzVosnom3_QrZ_DlB80U1TJRgp6Q7GFguBjDNjdj0yJvjGKXoyis1H0rVH0dS569fCy9yV_bJEBvgAxp6YNhr-9_yP7GxxsyY8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819767416</pqid></control><display><type>article</type><title>Cryo-EM structure of the Saccharomyces cerevisiae Rpd3L histone deacetylase complex</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Patel, Avinash B. ; Qing, Jinkang ; Tam, Kelly H. ; Zaman, Sara ; Luiso, Maria ; Radhakrishnan, Ishwar ; He, Yuan</creator><creatorcontrib>Patel, Avinash B. ; Qing, Jinkang ; Tam, Kelly H. ; Zaman, Sara ; Luiso, Maria ; Radhakrishnan, Ishwar ; He, Yuan ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>The Rpd3L histone deacetylase (HDAC) complex is an ancient 12-subunit complex conserved in a broad range of eukaryotes that performs localized deacetylation at or near sites of recruitment by DNA-bound factors. Here we describe the cryo-EM structure of this prototypical HDAC complex that is characterized by as many as seven subunits performing scaffolding roles for the tight integration of the only catalytic subunit, Rpd3. The principal scaffolding protein, Sin3, along with Rpd3 and the histone chaperone, Ume1, are present in two copies, with each copy organized into separate lobes of an asymmetric dimeric molecular assembly. The active site of one Rpd3 is completely occluded by a leucine side chain of Rxt2, while the tips of the two lobes and the more peripherally associated subunits exhibit varying levels of flexibility and positional disorder. The structure reveals unexpected structural homology/analogy between unrelated subunits in the fungal and mammalian complexes and provides a foundation for deeper interrogations of structure, biology, and mechanism of these complexes, as well as for the discovery of HDAC complex-specific inhibitors. The Rpd3L HDAC complex is an ancient chromatin-modifying complex found in diverse eukaryotes. Here, authors describe the cryo-EM structure of the yeast complex and show that key features are preserved in the human complex.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-38687-z</identifier><identifier>PMID: 37244892</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 631/337/100/2285 ; 631/337/458/1275 ; 631/45/535/1258/1259 ; 631/45/607 ; 631/535/1258/1259 ; 82/83 ; Chromatin ; Cryoelectron Microscopy ; Deacetylation ; Enzymes ; Eukaryotes ; Gene Expression Regulation, Fungal ; Histone deacetylase ; Histone Deacetylases - metabolism ; Histones ; Homology ; Humanities and Social Sciences ; Leucine ; Lobes ; multidisciplinary ; Repressor Proteins - metabolism ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Scaffolding ; Science ; Science &amp; Technology - Other Topics ; Science (multidisciplinary) ; Transcription Factors - metabolism ; Yeast ; Yeasts</subject><ispartof>Nature communications, 2023-05, Vol.14 (1), p.3061-3061, Article 3061</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-b2f9dfbf113119ce357ad8c4833cb6479be35024c62346039c79edbacec21b5d3</citedby><cites>FETCH-LOGICAL-c568t-b2f9dfbf113119ce357ad8c4833cb6479be35024c62346039c79edbacec21b5d3</cites><orcidid>0000-0002-1455-3963 ; 0000-0002-0195-9710 ; 0000000201959710 ; 0000000214553963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2819767416/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2819767416?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37244892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2424149$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Avinash B.</creatorcontrib><creatorcontrib>Qing, Jinkang</creatorcontrib><creatorcontrib>Tam, Kelly H.</creatorcontrib><creatorcontrib>Zaman, Sara</creatorcontrib><creatorcontrib>Luiso, Maria</creatorcontrib><creatorcontrib>Radhakrishnan, Ishwar</creatorcontrib><creatorcontrib>He, Yuan</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Cryo-EM structure of the Saccharomyces cerevisiae Rpd3L histone deacetylase complex</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The Rpd3L histone deacetylase (HDAC) complex is an ancient 12-subunit complex conserved in a broad range of eukaryotes that performs localized deacetylation at or near sites of recruitment by DNA-bound factors. Here we describe the cryo-EM structure of this prototypical HDAC complex that is characterized by as many as seven subunits performing scaffolding roles for the tight integration of the only catalytic subunit, Rpd3. The principal scaffolding protein, Sin3, along with Rpd3 and the histone chaperone, Ume1, are present in two copies, with each copy organized into separate lobes of an asymmetric dimeric molecular assembly. The active site of one Rpd3 is completely occluded by a leucine side chain of Rxt2, while the tips of the two lobes and the more peripherally associated subunits exhibit varying levels of flexibility and positional disorder. The structure reveals unexpected structural homology/analogy between unrelated subunits in the fungal and mammalian complexes and provides a foundation for deeper interrogations of structure, biology, and mechanism of these complexes, as well as for the discovery of HDAC complex-specific inhibitors. The Rpd3L HDAC complex is an ancient chromatin-modifying complex found in diverse eukaryotes. Here, authors describe the cryo-EM structure of the yeast complex and show that key features are preserved in the human complex.</description><subject>101/28</subject><subject>631/337/100/2285</subject><subject>631/337/458/1275</subject><subject>631/45/535/1258/1259</subject><subject>631/45/607</subject><subject>631/535/1258/1259</subject><subject>82/83</subject><subject>Chromatin</subject><subject>Cryoelectron Microscopy</subject><subject>Deacetylation</subject><subject>Enzymes</subject><subject>Eukaryotes</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Histone deacetylase</subject><subject>Histone Deacetylases - metabolism</subject><subject>Histones</subject><subject>Homology</subject><subject>Humanities and Social Sciences</subject><subject>Leucine</subject><subject>Lobes</subject><subject>multidisciplinary</subject><subject>Repressor Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Scaffolding</subject><subject>Science</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Transcription Factors - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAIrhwCfgrcXxCaFWg0iIkCmfLHk82WWXjxXaqbn89blNKywFfbM08887YfoviJSXvKOHt-yioaGRFGK9427Syun5SHDMiaEUl408fnI-K0xi3JC-uaCvE8-KISyZEq9hxcbEKB1-dfS1jCjOkOWDpuzL1WF4YgN4EvzsAxhIw4OUQB4Pl973j67IfYvITlg4NYDqMJmIJfrcf8epF8awzY8TTu_2k-Pnp7MfqS7X-9vl89XFdQd20qbKsU66zHaWcUgXIa2lcC6LlHGwjpLI5RJiAhnHR5OFBKnQ2twNGbe34SXG-6Dpvtnofhp0JB-3NoG8DPmy0CWmAEbXrpBVWIRWWCnDOWqIoBSclKKm4zFofFq39bHfoAKcUzPhI9HFmGnq98ZeaEsaEqtus8HpR8DENOsKQEHrw04SQNBMs_5fK0Nu7NsH_mjEmvRsi4DiaCf0cNWsZIUzVosnom3_QrZ_DlB80U1TJRgp6Q7GFguBjDNjdj0yJvjGKXoyis1H0rVH0dS569fCy9yV_bJEBvgAxp6YNhr-9_yP7GxxsyY8</recordid><startdate>20230527</startdate><enddate>20230527</enddate><creator>Patel, Avinash B.</creator><creator>Qing, Jinkang</creator><creator>Tam, Kelly H.</creator><creator>Zaman, Sara</creator><creator>Luiso, Maria</creator><creator>Radhakrishnan, Ishwar</creator><creator>He, Yuan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1455-3963</orcidid><orcidid>https://orcid.org/0000-0002-0195-9710</orcidid><orcidid>https://orcid.org/0000000201959710</orcidid><orcidid>https://orcid.org/0000000214553963</orcidid></search><sort><creationdate>20230527</creationdate><title>Cryo-EM structure of the Saccharomyces cerevisiae Rpd3L histone deacetylase complex</title><author>Patel, Avinash B. ; Qing, Jinkang ; Tam, Kelly H. ; Zaman, Sara ; Luiso, Maria ; Radhakrishnan, Ishwar ; He, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-b2f9dfbf113119ce357ad8c4833cb6479be35024c62346039c79edbacec21b5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>101/28</topic><topic>631/337/100/2285</topic><topic>631/337/458/1275</topic><topic>631/45/535/1258/1259</topic><topic>631/45/607</topic><topic>631/535/1258/1259</topic><topic>82/83</topic><topic>Chromatin</topic><topic>Cryoelectron Microscopy</topic><topic>Deacetylation</topic><topic>Enzymes</topic><topic>Eukaryotes</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Histone deacetylase</topic><topic>Histone Deacetylases - metabolism</topic><topic>Histones</topic><topic>Homology</topic><topic>Humanities and Social Sciences</topic><topic>Leucine</topic><topic>Lobes</topic><topic>multidisciplinary</topic><topic>Repressor Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Scaffolding</topic><topic>Science</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Transcription Factors - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Avinash B.</creatorcontrib><creatorcontrib>Qing, Jinkang</creatorcontrib><creatorcontrib>Tam, Kelly H.</creatorcontrib><creatorcontrib>Zaman, Sara</creatorcontrib><creatorcontrib>Luiso, Maria</creatorcontrib><creatorcontrib>Radhakrishnan, Ishwar</creatorcontrib><creatorcontrib>He, Yuan</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection (ProQuest Medical &amp; Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Avinash B.</au><au>Qing, Jinkang</au><au>Tam, Kelly H.</au><au>Zaman, Sara</au><au>Luiso, Maria</au><au>Radhakrishnan, Ishwar</au><au>He, Yuan</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryo-EM structure of the Saccharomyces cerevisiae Rpd3L histone deacetylase complex</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-05-27</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>3061</spage><epage>3061</epage><pages>3061-3061</pages><artnum>3061</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The Rpd3L histone deacetylase (HDAC) complex is an ancient 12-subunit complex conserved in a broad range of eukaryotes that performs localized deacetylation at or near sites of recruitment by DNA-bound factors. Here we describe the cryo-EM structure of this prototypical HDAC complex that is characterized by as many as seven subunits performing scaffolding roles for the tight integration of the only catalytic subunit, Rpd3. The principal scaffolding protein, Sin3, along with Rpd3 and the histone chaperone, Ume1, are present in two copies, with each copy organized into separate lobes of an asymmetric dimeric molecular assembly. The active site of one Rpd3 is completely occluded by a leucine side chain of Rxt2, while the tips of the two lobes and the more peripherally associated subunits exhibit varying levels of flexibility and positional disorder. The structure reveals unexpected structural homology/analogy between unrelated subunits in the fungal and mammalian complexes and provides a foundation for deeper interrogations of structure, biology, and mechanism of these complexes, as well as for the discovery of HDAC complex-specific inhibitors. The Rpd3L HDAC complex is an ancient chromatin-modifying complex found in diverse eukaryotes. Here, authors describe the cryo-EM structure of the yeast complex and show that key features are preserved in the human complex.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37244892</pmid><doi>10.1038/s41467-023-38687-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1455-3963</orcidid><orcidid>https://orcid.org/0000-0002-0195-9710</orcidid><orcidid>https://orcid.org/0000000201959710</orcidid><orcidid>https://orcid.org/0000000214553963</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-05, Vol.14 (1), p.3061-3061, Article 3061
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_df7b4b9e14b14cddbb0911cd77c97937
source PubMed (Medline); Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 101/28
631/337/100/2285
631/337/458/1275
631/45/535/1258/1259
631/45/607
631/535/1258/1259
82/83
Chromatin
Cryoelectron Microscopy
Deacetylation
Enzymes
Eukaryotes
Gene Expression Regulation, Fungal
Histone deacetylase
Histone Deacetylases - metabolism
Histones
Homology
Humanities and Social Sciences
Leucine
Lobes
multidisciplinary
Repressor Proteins - metabolism
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
Scaffolding
Science
Science & Technology - Other Topics
Science (multidisciplinary)
Transcription Factors - metabolism
Yeast
Yeasts
title Cryo-EM structure of the Saccharomyces cerevisiae Rpd3L histone deacetylase complex
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryo-EM%20structure%20of%20the%20Saccharomyces%20cerevisiae%20Rpd3L%20histone%20deacetylase%20complex&rft.jtitle=Nature%20communications&rft.au=Patel,%20Avinash%20B.&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States).%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2023-05-27&rft.volume=14&rft.issue=1&rft.spage=3061&rft.epage=3061&rft.pages=3061-3061&rft.artnum=3061&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-38687-z&rft_dat=%3Cproquest_doaj_%3E2820029546%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c568t-b2f9dfbf113119ce357ad8c4833cb6479be35024c62346039c79edbacec21b5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819767416&rft_id=info:pmid/37244892&rfr_iscdi=true