Loading…
Cryo-EM structure of the Saccharomyces cerevisiae Rpd3L histone deacetylase complex
The Rpd3L histone deacetylase (HDAC) complex is an ancient 12-subunit complex conserved in a broad range of eukaryotes that performs localized deacetylation at or near sites of recruitment by DNA-bound factors. Here we describe the cryo-EM structure of this prototypical HDAC complex that is characte...
Saved in:
Published in: | Nature communications 2023-05, Vol.14 (1), p.3061-3061, Article 3061 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c568t-b2f9dfbf113119ce357ad8c4833cb6479be35024c62346039c79edbacec21b5d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c568t-b2f9dfbf113119ce357ad8c4833cb6479be35024c62346039c79edbacec21b5d3 |
container_end_page | 3061 |
container_issue | 1 |
container_start_page | 3061 |
container_title | Nature communications |
container_volume | 14 |
creator | Patel, Avinash B. Qing, Jinkang Tam, Kelly H. Zaman, Sara Luiso, Maria Radhakrishnan, Ishwar He, Yuan |
description | The Rpd3L histone deacetylase (HDAC) complex is an ancient 12-subunit complex conserved in a broad range of eukaryotes that performs localized deacetylation at or near sites of recruitment by DNA-bound factors. Here we describe the cryo-EM structure of this prototypical HDAC complex that is characterized by as many as seven subunits performing scaffolding roles for the tight integration of the only catalytic subunit, Rpd3. The principal scaffolding protein, Sin3, along with Rpd3 and the histone chaperone, Ume1, are present in two copies, with each copy organized into separate lobes of an asymmetric dimeric molecular assembly. The active site of one Rpd3 is completely occluded by a leucine side chain of Rxt2, while the tips of the two lobes and the more peripherally associated subunits exhibit varying levels of flexibility and positional disorder. The structure reveals unexpected structural homology/analogy between unrelated subunits in the fungal and mammalian complexes and provides a foundation for deeper interrogations of structure, biology, and mechanism of these complexes, as well as for the discovery of HDAC complex-specific inhibitors.
The Rpd3L HDAC complex is an ancient chromatin-modifying complex found in diverse eukaryotes. Here, authors describe the cryo-EM structure of the yeast complex and show that key features are preserved in the human complex. |
doi_str_mv | 10.1038/s41467-023-38687-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_df7b4b9e14b14cddbb0911cd77c97937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_df7b4b9e14b14cddbb0911cd77c97937</doaj_id><sourcerecordid>2820029546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-b2f9dfbf113119ce357ad8c4833cb6479be35024c62346039c79edbacec21b5d3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAIrhwCfgrcXxCaFWg0iIkCmfLHk82WWXjxXaqbn89blNKywFfbM08887YfoviJSXvKOHt-yioaGRFGK9427Syun5SHDMiaEUl408fnI-K0xi3JC-uaCvE8-KISyZEq9hxcbEKB1-dfS1jCjOkOWDpuzL1WF4YgN4EvzsAxhIw4OUQB4Pl973j67IfYvITlg4NYDqMJmIJfrcf8epF8awzY8TTu_2k-Pnp7MfqS7X-9vl89XFdQd20qbKsU66zHaWcUgXIa2lcC6LlHGwjpLI5RJiAhnHR5OFBKnQ2twNGbe34SXG-6Dpvtnofhp0JB-3NoG8DPmy0CWmAEbXrpBVWIRWWCnDOWqIoBSclKKm4zFofFq39bHfoAKcUzPhI9HFmGnq98ZeaEsaEqtus8HpR8DENOsKQEHrw04SQNBMs_5fK0Nu7NsH_mjEmvRsi4DiaCf0cNWsZIUzVosnom3_QrZ_DlB80U1TJRgp6Q7GFguBjDNjdj0yJvjGKXoyis1H0rVH0dS569fCy9yV_bJEBvgAxp6YNhr-9_yP7GxxsyY8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819767416</pqid></control><display><type>article</type><title>Cryo-EM structure of the Saccharomyces cerevisiae Rpd3L histone deacetylase complex</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Patel, Avinash B. ; Qing, Jinkang ; Tam, Kelly H. ; Zaman, Sara ; Luiso, Maria ; Radhakrishnan, Ishwar ; He, Yuan</creator><creatorcontrib>Patel, Avinash B. ; Qing, Jinkang ; Tam, Kelly H. ; Zaman, Sara ; Luiso, Maria ; Radhakrishnan, Ishwar ; He, Yuan ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>The Rpd3L histone deacetylase (HDAC) complex is an ancient 12-subunit complex conserved in a broad range of eukaryotes that performs localized deacetylation at or near sites of recruitment by DNA-bound factors. Here we describe the cryo-EM structure of this prototypical HDAC complex that is characterized by as many as seven subunits performing scaffolding roles for the tight integration of the only catalytic subunit, Rpd3. The principal scaffolding protein, Sin3, along with Rpd3 and the histone chaperone, Ume1, are present in two copies, with each copy organized into separate lobes of an asymmetric dimeric molecular assembly. The active site of one Rpd3 is completely occluded by a leucine side chain of Rxt2, while the tips of the two lobes and the more peripherally associated subunits exhibit varying levels of flexibility and positional disorder. The structure reveals unexpected structural homology/analogy between unrelated subunits in the fungal and mammalian complexes and provides a foundation for deeper interrogations of structure, biology, and mechanism of these complexes, as well as for the discovery of HDAC complex-specific inhibitors.
The Rpd3L HDAC complex is an ancient chromatin-modifying complex found in diverse eukaryotes. Here, authors describe the cryo-EM structure of the yeast complex and show that key features are preserved in the human complex.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-38687-z</identifier><identifier>PMID: 37244892</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 631/337/100/2285 ; 631/337/458/1275 ; 631/45/535/1258/1259 ; 631/45/607 ; 631/535/1258/1259 ; 82/83 ; Chromatin ; Cryoelectron Microscopy ; Deacetylation ; Enzymes ; Eukaryotes ; Gene Expression Regulation, Fungal ; Histone deacetylase ; Histone Deacetylases - metabolism ; Histones ; Homology ; Humanities and Social Sciences ; Leucine ; Lobes ; multidisciplinary ; Repressor Proteins - metabolism ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Scaffolding ; Science ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Transcription Factors - metabolism ; Yeast ; Yeasts</subject><ispartof>Nature communications, 2023-05, Vol.14 (1), p.3061-3061, Article 3061</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-b2f9dfbf113119ce357ad8c4833cb6479be35024c62346039c79edbacec21b5d3</citedby><cites>FETCH-LOGICAL-c568t-b2f9dfbf113119ce357ad8c4833cb6479be35024c62346039c79edbacec21b5d3</cites><orcidid>0000-0002-1455-3963 ; 0000-0002-0195-9710 ; 0000000201959710 ; 0000000214553963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2819767416/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2819767416?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37244892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2424149$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Avinash B.</creatorcontrib><creatorcontrib>Qing, Jinkang</creatorcontrib><creatorcontrib>Tam, Kelly H.</creatorcontrib><creatorcontrib>Zaman, Sara</creatorcontrib><creatorcontrib>Luiso, Maria</creatorcontrib><creatorcontrib>Radhakrishnan, Ishwar</creatorcontrib><creatorcontrib>He, Yuan</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Cryo-EM structure of the Saccharomyces cerevisiae Rpd3L histone deacetylase complex</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The Rpd3L histone deacetylase (HDAC) complex is an ancient 12-subunit complex conserved in a broad range of eukaryotes that performs localized deacetylation at or near sites of recruitment by DNA-bound factors. Here we describe the cryo-EM structure of this prototypical HDAC complex that is characterized by as many as seven subunits performing scaffolding roles for the tight integration of the only catalytic subunit, Rpd3. The principal scaffolding protein, Sin3, along with Rpd3 and the histone chaperone, Ume1, are present in two copies, with each copy organized into separate lobes of an asymmetric dimeric molecular assembly. The active site of one Rpd3 is completely occluded by a leucine side chain of Rxt2, while the tips of the two lobes and the more peripherally associated subunits exhibit varying levels of flexibility and positional disorder. The structure reveals unexpected structural homology/analogy between unrelated subunits in the fungal and mammalian complexes and provides a foundation for deeper interrogations of structure, biology, and mechanism of these complexes, as well as for the discovery of HDAC complex-specific inhibitors.
The Rpd3L HDAC complex is an ancient chromatin-modifying complex found in diverse eukaryotes. Here, authors describe the cryo-EM structure of the yeast complex and show that key features are preserved in the human complex.</description><subject>101/28</subject><subject>631/337/100/2285</subject><subject>631/337/458/1275</subject><subject>631/45/535/1258/1259</subject><subject>631/45/607</subject><subject>631/535/1258/1259</subject><subject>82/83</subject><subject>Chromatin</subject><subject>Cryoelectron Microscopy</subject><subject>Deacetylation</subject><subject>Enzymes</subject><subject>Eukaryotes</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Histone deacetylase</subject><subject>Histone Deacetylases - metabolism</subject><subject>Histones</subject><subject>Homology</subject><subject>Humanities and Social Sciences</subject><subject>Leucine</subject><subject>Lobes</subject><subject>multidisciplinary</subject><subject>Repressor Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Scaffolding</subject><subject>Science</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Transcription Factors - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAIrhwCfgrcXxCaFWg0iIkCmfLHk82WWXjxXaqbn89blNKywFfbM08887YfoviJSXvKOHt-yioaGRFGK9427Syun5SHDMiaEUl408fnI-K0xi3JC-uaCvE8-KISyZEq9hxcbEKB1-dfS1jCjOkOWDpuzL1WF4YgN4EvzsAxhIw4OUQB4Pl973j67IfYvITlg4NYDqMJmIJfrcf8epF8awzY8TTu_2k-Pnp7MfqS7X-9vl89XFdQd20qbKsU66zHaWcUgXIa2lcC6LlHGwjpLI5RJiAhnHR5OFBKnQ2twNGbe34SXG-6Dpvtnofhp0JB-3NoG8DPmy0CWmAEbXrpBVWIRWWCnDOWqIoBSclKKm4zFofFq39bHfoAKcUzPhI9HFmGnq98ZeaEsaEqtus8HpR8DENOsKQEHrw04SQNBMs_5fK0Nu7NsH_mjEmvRsi4DiaCf0cNWsZIUzVosnom3_QrZ_DlB80U1TJRgp6Q7GFguBjDNjdj0yJvjGKXoyis1H0rVH0dS569fCy9yV_bJEBvgAxp6YNhr-9_yP7GxxsyY8</recordid><startdate>20230527</startdate><enddate>20230527</enddate><creator>Patel, Avinash B.</creator><creator>Qing, Jinkang</creator><creator>Tam, Kelly H.</creator><creator>Zaman, Sara</creator><creator>Luiso, Maria</creator><creator>Radhakrishnan, Ishwar</creator><creator>He, Yuan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1455-3963</orcidid><orcidid>https://orcid.org/0000-0002-0195-9710</orcidid><orcidid>https://orcid.org/0000000201959710</orcidid><orcidid>https://orcid.org/0000000214553963</orcidid></search><sort><creationdate>20230527</creationdate><title>Cryo-EM structure of the Saccharomyces cerevisiae Rpd3L histone deacetylase complex</title><author>Patel, Avinash B. ; Qing, Jinkang ; Tam, Kelly H. ; Zaman, Sara ; Luiso, Maria ; Radhakrishnan, Ishwar ; He, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-b2f9dfbf113119ce357ad8c4833cb6479be35024c62346039c79edbacec21b5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>101/28</topic><topic>631/337/100/2285</topic><topic>631/337/458/1275</topic><topic>631/45/535/1258/1259</topic><topic>631/45/607</topic><topic>631/535/1258/1259</topic><topic>82/83</topic><topic>Chromatin</topic><topic>Cryoelectron Microscopy</topic><topic>Deacetylation</topic><topic>Enzymes</topic><topic>Eukaryotes</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Histone deacetylase</topic><topic>Histone Deacetylases - metabolism</topic><topic>Histones</topic><topic>Homology</topic><topic>Humanities and Social Sciences</topic><topic>Leucine</topic><topic>Lobes</topic><topic>multidisciplinary</topic><topic>Repressor Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Scaffolding</topic><topic>Science</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Transcription Factors - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Avinash B.</creatorcontrib><creatorcontrib>Qing, Jinkang</creatorcontrib><creatorcontrib>Tam, Kelly H.</creatorcontrib><creatorcontrib>Zaman, Sara</creatorcontrib><creatorcontrib>Luiso, Maria</creatorcontrib><creatorcontrib>Radhakrishnan, Ishwar</creatorcontrib><creatorcontrib>He, Yuan</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection (ProQuest Medical & Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Avinash B.</au><au>Qing, Jinkang</au><au>Tam, Kelly H.</au><au>Zaman, Sara</au><au>Luiso, Maria</au><au>Radhakrishnan, Ishwar</au><au>He, Yuan</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryo-EM structure of the Saccharomyces cerevisiae Rpd3L histone deacetylase complex</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-05-27</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>3061</spage><epage>3061</epage><pages>3061-3061</pages><artnum>3061</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The Rpd3L histone deacetylase (HDAC) complex is an ancient 12-subunit complex conserved in a broad range of eukaryotes that performs localized deacetylation at or near sites of recruitment by DNA-bound factors. Here we describe the cryo-EM structure of this prototypical HDAC complex that is characterized by as many as seven subunits performing scaffolding roles for the tight integration of the only catalytic subunit, Rpd3. The principal scaffolding protein, Sin3, along with Rpd3 and the histone chaperone, Ume1, are present in two copies, with each copy organized into separate lobes of an asymmetric dimeric molecular assembly. The active site of one Rpd3 is completely occluded by a leucine side chain of Rxt2, while the tips of the two lobes and the more peripherally associated subunits exhibit varying levels of flexibility and positional disorder. The structure reveals unexpected structural homology/analogy between unrelated subunits in the fungal and mammalian complexes and provides a foundation for deeper interrogations of structure, biology, and mechanism of these complexes, as well as for the discovery of HDAC complex-specific inhibitors.
The Rpd3L HDAC complex is an ancient chromatin-modifying complex found in diverse eukaryotes. Here, authors describe the cryo-EM structure of the yeast complex and show that key features are preserved in the human complex.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37244892</pmid><doi>10.1038/s41467-023-38687-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1455-3963</orcidid><orcidid>https://orcid.org/0000-0002-0195-9710</orcidid><orcidid>https://orcid.org/0000000201959710</orcidid><orcidid>https://orcid.org/0000000214553963</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-05, Vol.14 (1), p.3061-3061, Article 3061 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_df7b4b9e14b14cddbb0911cd77c97937 |
source | PubMed (Medline); Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 101/28 631/337/100/2285 631/337/458/1275 631/45/535/1258/1259 631/45/607 631/535/1258/1259 82/83 Chromatin Cryoelectron Microscopy Deacetylation Enzymes Eukaryotes Gene Expression Regulation, Fungal Histone deacetylase Histone Deacetylases - metabolism Histones Homology Humanities and Social Sciences Leucine Lobes multidisciplinary Repressor Proteins - metabolism Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Scaffolding Science Science & Technology - Other Topics Science (multidisciplinary) Transcription Factors - metabolism Yeast Yeasts |
title | Cryo-EM structure of the Saccharomyces cerevisiae Rpd3L histone deacetylase complex |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryo-EM%20structure%20of%20the%20Saccharomyces%20cerevisiae%20Rpd3L%20histone%20deacetylase%20complex&rft.jtitle=Nature%20communications&rft.au=Patel,%20Avinash%20B.&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States).%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2023-05-27&rft.volume=14&rft.issue=1&rft.spage=3061&rft.epage=3061&rft.pages=3061-3061&rft.artnum=3061&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-38687-z&rft_dat=%3Cproquest_doaj_%3E2820029546%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c568t-b2f9dfbf113119ce357ad8c4833cb6479be35024c62346039c79edbacec21b5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819767416&rft_id=info:pmid/37244892&rfr_iscdi=true |