Loading…

Dual-specificity Phosphatase 1 Deficiency Induces Endometrioid Adenocarcinoma Progression via Activation of Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Pathway

Background: Previously, we reported that dual-specificity adenocarcinoma (EEA). However, the role of DUSP1 medroxyprogesterone (MPA) are still unclear. phosphatase I (DUSPI) was differentially expressed in endometrioid in EEA progression and the relationship between DUSPI and Methods: The expression...

Full description

Saved in:
Bibliographic Details
Published in:Chinese medical journal 2016-05, Vol.129 (10), p.1154-1160
Main Authors: Yang, Yuan, Zhou, Jing-Yi, Zhao, Li-Jun, Gao, Bao-Rong, Wan, Xiao-Ping, Wang, Jian-Liu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Previously, we reported that dual-specificity adenocarcinoma (EEA). However, the role of DUSP1 medroxyprogesterone (MPA) are still unclear. phosphatase I (DUSPI) was differentially expressed in endometrioid in EEA progression and the relationship between DUSPI and Methods: The expression of DUSPI in EEA specimens was detected by immunohistochemical analysis. The effect of DUSPI on cell proliferation was analyzed by Cell Counting Kit 8 and colony formation assay, and cell migration was analyzed by transwell assay. MPA-induced DUSPI expression in EEA cells was measured by Western blot. Results: DUSPI expression was deficient in advanced International Federation of Gynecology and Obstetrics stage, high-grade and myometrial invasive EEA. In EEA cell lines (HeclA, Hecl B, RL952, and Ishikawa), the DUSP1 expression was substantially higher in lshikawa cells than in other cell lines (P 〈 0.05). Knockdown ofDUSP I promoted lshikawa cells proliferation, migration, and activation of mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/Erk) pathway. MPA-induced DUSP1 expression and inhibited MAPK/Erk pathway in Ishikawa cells. Conclusions: Our data suggest that DUSP1 deficiency promotes EEA progression via MAPK/Erk pathway, which may be reversed by MPA, suggesting that DUSP I may serve as a potential therapeutic target for the treatment of EEA.
ISSN:0366-6999
2542-5641
DOI:10.4103/0366-6999.181954