Loading…

UAV Swarm Navigation Using Dynamic Adaptive Kalman Filter and Network Navigation

Aiming to improve the positioning accuracy of an unmanned aerial vehicle (UAV) swarm under different scenarios, a two-case navigation scheme is proposed and simulated. First, when the Global Navigation Satellite System (GNSS) is available, the inertial navigation system (INS)/GNSS-integrated system...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-08, Vol.21 (16), p.5374
Main Authors: Zhang, Jingjuan, Zhou, Wenxiang, Wang, Xueyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aiming to improve the positioning accuracy of an unmanned aerial vehicle (UAV) swarm under different scenarios, a two-case navigation scheme is proposed and simulated. First, when the Global Navigation Satellite System (GNSS) is available, the inertial navigation system (INS)/GNSS-integrated system based on the Kalman Filter (KF) plays a key role for each UAV in accurate navigation. Considering that Kalman filter’s process noise covariance matrix Q and observation noise covariance matrix R affect the navigation accuracy, this paper proposes a dynamic adaptive Kalman filter (DAKF) which introduces ensemble empirical mode decomposition (EEMD) to determine R and adjust Q adaptively, avoiding the degradation and divergence caused by an unknown or inaccurate noise model. Second, a network navigation algorithm (NNA) is employed when GNSS outages happen and the INS/GNSS-integrated system is not available. Distance information among all UAVs in the swarm is adopted to compensate the INS position errors. Finally, simulations are conducted to validate the effectiveness of the proposed method, results showing that DAKF improves the positioning accuracy of a single UAV by 30–50%, and NNA increases the positioning accuracy of a swarm by 93%.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21165374