Loading…

A Systematic Review of Virtual Reality Interfaces for Controlling and Interacting with Robots

There is a significant amount of synergy between virtual reality (VR) and the field of robotics. However, it has only been in approximately the past five years that commercial immersive VR devices have been available to developers. This new availability has led to a rapid increase in research using...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-12, Vol.10 (24), p.9051
Main Authors: Wonsick, Murphy, Padir, Taskin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There is a significant amount of synergy between virtual reality (VR) and the field of robotics. However, it has only been in approximately the past five years that commercial immersive VR devices have been available to developers. This new availability has led to a rapid increase in research using VR devices in the field of robotics, especially in the development of VR interfaces for operating robots. In this paper, we present a systematic review on VR interfaces for robot operation that utilize commercially available immersive VR devices. A total of 41 papers published between 2016–2020 were collected for review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Papers are discussed and categorized into five categories: (1) Visualization, which focuses on displaying data or information to operators; (2) Robot Control and Planning, which focuses on connecting human input or movement to robot movement; (3) Interaction, which focuses on the development of new interaction techniques and/or identifying best interaction practices; (4) Usability, which focuses on user experiences of VR interfaces; and (5) Infrastructure, which focuses on system architectures or software to support connecting VR and robots for interface development. Additionally, we provide future directions to continue development in VR interfaces for operating robots.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10249051