Loading…
Second phase effect on corrosion of nanostructured Mg-Zn-Ca dual-phase metallic glasses
Dual-phase metallic glasses (DP-MGs), a special member of the MGs family, often reveal unusual strength and ductility, yet, their corrosion behaviors are not understood. Here, we developed a nanostructured Mg57Zn36Ca7 (at.%) DP-MG and uncovered its corrosion mechanism in simulated body fluid (SBF) a...
Saved in:
Published in: | Journal of magnesium and alloys 2021-09, Vol.9 (5), p.1546-1555 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dual-phase metallic glasses (DP-MGs), a special member of the MGs family, often reveal unusual strength and ductility, yet, their corrosion behaviors are not understood. Here, we developed a nanostructured Mg57Zn36Ca7 (at.%) DP-MG and uncovered its corrosion mechanism in simulated body fluid (SBF) at the near-atomic scale utilizing transmission electron microscope (TEM) and atom probe tomography (APT). The 10-nm-wide Ca-rich amorphous phases allow oxygen propagation into the DP-MG, resulting in a micrometer thick hydroxides/oxides layer. This dense corrosion layer protects the DP-MG from further corrosion, enabling a corrosion rate that is 77% lower than that of Mg (99.99% purity). |
---|---|
ISSN: | 2213-9567 2213-9567 |
DOI: | 10.1016/j.jma.2021.03.016 |