Loading…
On-Board Real-Time Trajectory Planning for Fixed Wing Unmanned Aerial Vehicles in Extreme Environments
A team from the University of Bristol have developed a method of operating fixed wing Unmanned Aerial Vehicles (UAVs) at long-range and high-altitude over Volcán de Fuego in Guatemala for the purposes of volcanic monitoring and ash-sampling. Conventionally, the mission plans must be carefully design...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2019-09, Vol.19 (19), p.4085 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c512t-40c1a26d8a12edf4635ba5ad20fa6e6432c28646dea65038b582f1fdde4da323 |
---|---|
cites | cdi_FETCH-LOGICAL-c512t-40c1a26d8a12edf4635ba5ad20fa6e6432c28646dea65038b582f1fdde4da323 |
container_end_page | |
container_issue | 19 |
container_start_page | 4085 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 19 |
creator | Schellenberg, Ben Richardson, Tom Richards, Arthur Clarke, Robert Watson, Matt |
description | A team from the University of Bristol have developed a method of operating fixed wing Unmanned Aerial Vehicles (UAVs) at long-range and high-altitude over Volcán de Fuego in Guatemala for the purposes of volcanic monitoring and ash-sampling. Conventionally, the mission plans must be carefully designed prior to flight, to cope with altitude gains in excess of 3000 m, reaching 9 km from the ground control station and 4500 m above mean sea level. This means the climb route cannot be modified mid-flight. At these scales, atmospheric conditions change over the course of a flight and so a real-time trajectory planner (RTTP) is desirable, calculating a route on-board the aircraft. This paper presents an RTTP based around a genetic algorithm optimisation running on a Raspberry Pi 3 B+, the first of its kind to be flown on-board a UAV. Four flights are presented, each having calculated a new and valid trajectory on-board, from the ground control station to the summit region of Volcań de Fuego. The RTTP flights are shown to have approximately equivalent efficiency characteristics to conventionally planned missions. This technology is promising for the future of long-range UAV operations and further development is likely to see significant energy and efficiency savings. |
doi_str_mv | 10.3390/s19194085 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dfa7ea2807e3452597f4dd4c8bbdd2cf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dfa7ea2807e3452597f4dd4c8bbdd2cf</doaj_id><sourcerecordid>2296661570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-40c1a26d8a12edf4635ba5ad20fa6e6432c28646dea65038b582f1fdde4da323</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqVw4B9E4gKHFHv8sc4Fqa22tFKlIrTA0ZqNx1uvErvY2ar99yRsVVFO8_Xq0Tujqar3nB0L0bLPhbe8lcyoF9UhlyAbA8Be_pMfVG9K2TIGQgjzujoQXEmtRXtY-evYnCbMrv5O2DerMFC9yrilbkz5of7WY4whbmqfcn0e7snVv-byRxymwVSdUA7Y1z_pJnQ9lTrEenk_Zpowy3gXcooDxbG8rV557Au9e4xH1ep8uTq7aK6uv16enVw1neIwNpJ1HEE7gxzIeamFWqNCB8yjJi0FdGC01I5QKybMWhnw3DtH0qEAcVRd7rEu4dbe5jBgfrAJg_3bSHljMY-zU-s8LgjBsAUJqUC1Cy-dk51Zr52Dzk-sL3vW7W49kOumNTL2z6DPJzHc2E26s9owDWY28_ERkNPvHZXRDqF01E8npbQrFqDVWnO1YJP0w3_SbdrlOF3KghJKGcZhVn3aq7qcSsnkn8xwZudHsE-PIP4AYwukkQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535580120</pqid></control><display><type>article</type><title>On-Board Real-Time Trajectory Planning for Fixed Wing Unmanned Aerial Vehicles in Extreme Environments</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Schellenberg, Ben ; Richardson, Tom ; Richards, Arthur ; Clarke, Robert ; Watson, Matt</creator><creatorcontrib>Schellenberg, Ben ; Richardson, Tom ; Richards, Arthur ; Clarke, Robert ; Watson, Matt</creatorcontrib><description>A team from the University of Bristol have developed a method of operating fixed wing Unmanned Aerial Vehicles (UAVs) at long-range and high-altitude over Volcán de Fuego in Guatemala for the purposes of volcanic monitoring and ash-sampling. Conventionally, the mission plans must be carefully designed prior to flight, to cope with altitude gains in excess of 3000 m, reaching 9 km from the ground control station and 4500 m above mean sea level. This means the climb route cannot be modified mid-flight. At these scales, atmospheric conditions change over the course of a flight and so a real-time trajectory planner (RTTP) is desirable, calculating a route on-board the aircraft. This paper presents an RTTP based around a genetic algorithm optimisation running on a Raspberry Pi 3 B+, the first of its kind to be flown on-board a UAV. Four flights are presented, each having calculated a new and valid trajectory on-board, from the ground control station to the summit region of Volcań de Fuego. The RTTP flights are shown to have approximately equivalent efficiency characteristics to conventionally planned missions. This technology is promising for the future of long-range UAV operations and further development is likely to see significant energy and efficiency savings.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19194085</identifier><identifier>PMID: 31546639</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aircraft ; Automation ; Behavior ; environmental monitoring ; Extreme environments ; Genetic algorithms ; Ground based control ; High altitude ; Onboard ; Planning ; Real time ; Robots ; Sea level ; Trajectory planning ; UAV navigation ; UAV path planning ; Unmanned aerial vehicles</subject><ispartof>Sensors (Basel, Switzerland), 2019-09, Vol.19 (19), p.4085</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-40c1a26d8a12edf4635ba5ad20fa6e6432c28646dea65038b582f1fdde4da323</citedby><cites>FETCH-LOGICAL-c512t-40c1a26d8a12edf4635ba5ad20fa6e6432c28646dea65038b582f1fdde4da323</cites><orcidid>0000-0001-7767-452X ; 0000-0001-9500-5514 ; 0000-0002-7296-6512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2535580120/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2535580120?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Schellenberg, Ben</creatorcontrib><creatorcontrib>Richardson, Tom</creatorcontrib><creatorcontrib>Richards, Arthur</creatorcontrib><creatorcontrib>Clarke, Robert</creatorcontrib><creatorcontrib>Watson, Matt</creatorcontrib><title>On-Board Real-Time Trajectory Planning for Fixed Wing Unmanned Aerial Vehicles in Extreme Environments</title><title>Sensors (Basel, Switzerland)</title><description>A team from the University of Bristol have developed a method of operating fixed wing Unmanned Aerial Vehicles (UAVs) at long-range and high-altitude over Volcán de Fuego in Guatemala for the purposes of volcanic monitoring and ash-sampling. Conventionally, the mission plans must be carefully designed prior to flight, to cope with altitude gains in excess of 3000 m, reaching 9 km from the ground control station and 4500 m above mean sea level. This means the climb route cannot be modified mid-flight. At these scales, atmospheric conditions change over the course of a flight and so a real-time trajectory planner (RTTP) is desirable, calculating a route on-board the aircraft. This paper presents an RTTP based around a genetic algorithm optimisation running on a Raspberry Pi 3 B+, the first of its kind to be flown on-board a UAV. Four flights are presented, each having calculated a new and valid trajectory on-board, from the ground control station to the summit region of Volcań de Fuego. The RTTP flights are shown to have approximately equivalent efficiency characteristics to conventionally planned missions. This technology is promising for the future of long-range UAV operations and further development is likely to see significant energy and efficiency savings.</description><subject>Aircraft</subject><subject>Automation</subject><subject>Behavior</subject><subject>environmental monitoring</subject><subject>Extreme environments</subject><subject>Genetic algorithms</subject><subject>Ground based control</subject><subject>High altitude</subject><subject>Onboard</subject><subject>Planning</subject><subject>Real time</subject><subject>Robots</subject><subject>Sea level</subject><subject>Trajectory planning</subject><subject>UAV navigation</subject><subject>UAV path planning</subject><subject>Unmanned aerial vehicles</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEoqVw4B9E4gKHFHv8sc4Fqa22tFKlIrTA0ZqNx1uvErvY2ar99yRsVVFO8_Xq0Tujqar3nB0L0bLPhbe8lcyoF9UhlyAbA8Be_pMfVG9K2TIGQgjzujoQXEmtRXtY-evYnCbMrv5O2DerMFC9yrilbkz5of7WY4whbmqfcn0e7snVv-byRxymwVSdUA7Y1z_pJnQ9lTrEenk_Zpowy3gXcooDxbG8rV557Au9e4xH1ep8uTq7aK6uv16enVw1neIwNpJ1HEE7gxzIeamFWqNCB8yjJi0FdGC01I5QKybMWhnw3DtH0qEAcVRd7rEu4dbe5jBgfrAJg_3bSHljMY-zU-s8LgjBsAUJqUC1Cy-dk51Zr52Dzk-sL3vW7W49kOumNTL2z6DPJzHc2E26s9owDWY28_ERkNPvHZXRDqF01E8npbQrFqDVWnO1YJP0w3_SbdrlOF3KghJKGcZhVn3aq7qcSsnkn8xwZudHsE-PIP4AYwukkQ</recordid><startdate>20190921</startdate><enddate>20190921</enddate><creator>Schellenberg, Ben</creator><creator>Richardson, Tom</creator><creator>Richards, Arthur</creator><creator>Clarke, Robert</creator><creator>Watson, Matt</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7767-452X</orcidid><orcidid>https://orcid.org/0000-0001-9500-5514</orcidid><orcidid>https://orcid.org/0000-0002-7296-6512</orcidid></search><sort><creationdate>20190921</creationdate><title>On-Board Real-Time Trajectory Planning for Fixed Wing Unmanned Aerial Vehicles in Extreme Environments</title><author>Schellenberg, Ben ; Richardson, Tom ; Richards, Arthur ; Clarke, Robert ; Watson, Matt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-40c1a26d8a12edf4635ba5ad20fa6e6432c28646dea65038b582f1fdde4da323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aircraft</topic><topic>Automation</topic><topic>Behavior</topic><topic>environmental monitoring</topic><topic>Extreme environments</topic><topic>Genetic algorithms</topic><topic>Ground based control</topic><topic>High altitude</topic><topic>Onboard</topic><topic>Planning</topic><topic>Real time</topic><topic>Robots</topic><topic>Sea level</topic><topic>Trajectory planning</topic><topic>UAV navigation</topic><topic>UAV path planning</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schellenberg, Ben</creatorcontrib><creatorcontrib>Richardson, Tom</creatorcontrib><creatorcontrib>Richards, Arthur</creatorcontrib><creatorcontrib>Clarke, Robert</creatorcontrib><creatorcontrib>Watson, Matt</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schellenberg, Ben</au><au>Richardson, Tom</au><au>Richards, Arthur</au><au>Clarke, Robert</au><au>Watson, Matt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-Board Real-Time Trajectory Planning for Fixed Wing Unmanned Aerial Vehicles in Extreme Environments</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2019-09-21</date><risdate>2019</risdate><volume>19</volume><issue>19</issue><spage>4085</spage><pages>4085-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>A team from the University of Bristol have developed a method of operating fixed wing Unmanned Aerial Vehicles (UAVs) at long-range and high-altitude over Volcán de Fuego in Guatemala for the purposes of volcanic monitoring and ash-sampling. Conventionally, the mission plans must be carefully designed prior to flight, to cope with altitude gains in excess of 3000 m, reaching 9 km from the ground control station and 4500 m above mean sea level. This means the climb route cannot be modified mid-flight. At these scales, atmospheric conditions change over the course of a flight and so a real-time trajectory planner (RTTP) is desirable, calculating a route on-board the aircraft. This paper presents an RTTP based around a genetic algorithm optimisation running on a Raspberry Pi 3 B+, the first of its kind to be flown on-board a UAV. Four flights are presented, each having calculated a new and valid trajectory on-board, from the ground control station to the summit region of Volcań de Fuego. The RTTP flights are shown to have approximately equivalent efficiency characteristics to conventionally planned missions. This technology is promising for the future of long-range UAV operations and further development is likely to see significant energy and efficiency savings.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>31546639</pmid><doi>10.3390/s19194085</doi><orcidid>https://orcid.org/0000-0001-7767-452X</orcidid><orcidid>https://orcid.org/0000-0001-9500-5514</orcidid><orcidid>https://orcid.org/0000-0002-7296-6512</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2019-09, Vol.19 (19), p.4085 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_dfa7ea2807e3452597f4dd4c8bbdd2cf |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Aircraft Automation Behavior environmental monitoring Extreme environments Genetic algorithms Ground based control High altitude Onboard Planning Real time Robots Sea level Trajectory planning UAV navigation UAV path planning Unmanned aerial vehicles |
title | On-Board Real-Time Trajectory Planning for Fixed Wing Unmanned Aerial Vehicles in Extreme Environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-Board%20Real-Time%20Trajectory%20Planning%20for%20Fixed%20Wing%20Unmanned%20Aerial%20Vehicles%20in%20Extreme%20Environments&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Schellenberg,%20Ben&rft.date=2019-09-21&rft.volume=19&rft.issue=19&rft.spage=4085&rft.pages=4085-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19194085&rft_dat=%3Cproquest_doaj_%3E2296661570%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-40c1a26d8a12edf4635ba5ad20fa6e6432c28646dea65038b582f1fdde4da323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2535580120&rft_id=info:pmid/31546639&rfr_iscdi=true |