Loading…

On-Board Real-Time Trajectory Planning for Fixed Wing Unmanned Aerial Vehicles in Extreme Environments

A team from the University of Bristol have developed a method of operating fixed wing Unmanned Aerial Vehicles (UAVs) at long-range and high-altitude over Volcán de Fuego in Guatemala for the purposes of volcanic monitoring and ash-sampling. Conventionally, the mission plans must be carefully design...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2019-09, Vol.19 (19), p.4085
Main Authors: Schellenberg, Ben, Richardson, Tom, Richards, Arthur, Clarke, Robert, Watson, Matt
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c512t-40c1a26d8a12edf4635ba5ad20fa6e6432c28646dea65038b582f1fdde4da323
cites cdi_FETCH-LOGICAL-c512t-40c1a26d8a12edf4635ba5ad20fa6e6432c28646dea65038b582f1fdde4da323
container_end_page
container_issue 19
container_start_page 4085
container_title Sensors (Basel, Switzerland)
container_volume 19
creator Schellenberg, Ben
Richardson, Tom
Richards, Arthur
Clarke, Robert
Watson, Matt
description A team from the University of Bristol have developed a method of operating fixed wing Unmanned Aerial Vehicles (UAVs) at long-range and high-altitude over Volcán de Fuego in Guatemala for the purposes of volcanic monitoring and ash-sampling. Conventionally, the mission plans must be carefully designed prior to flight, to cope with altitude gains in excess of 3000 m, reaching 9 km from the ground control station and 4500 m above mean sea level. This means the climb route cannot be modified mid-flight. At these scales, atmospheric conditions change over the course of a flight and so a real-time trajectory planner (RTTP) is desirable, calculating a route on-board the aircraft. This paper presents an RTTP based around a genetic algorithm optimisation running on a Raspberry Pi 3 B+, the first of its kind to be flown on-board a UAV. Four flights are presented, each having calculated a new and valid trajectory on-board, from the ground control station to the summit region of Volcań de Fuego. The RTTP flights are shown to have approximately equivalent efficiency characteristics to conventionally planned missions. This technology is promising for the future of long-range UAV operations and further development is likely to see significant energy and efficiency savings.
doi_str_mv 10.3390/s19194085
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dfa7ea2807e3452597f4dd4c8bbdd2cf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dfa7ea2807e3452597f4dd4c8bbdd2cf</doaj_id><sourcerecordid>2296661570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-40c1a26d8a12edf4635ba5ad20fa6e6432c28646dea65038b582f1fdde4da323</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqVw4B9E4gKHFHv8sc4Fqa22tFKlIrTA0ZqNx1uvErvY2ar99yRsVVFO8_Xq0Tujqar3nB0L0bLPhbe8lcyoF9UhlyAbA8Be_pMfVG9K2TIGQgjzujoQXEmtRXtY-evYnCbMrv5O2DerMFC9yrilbkz5of7WY4whbmqfcn0e7snVv-byRxymwVSdUA7Y1z_pJnQ9lTrEenk_Zpowy3gXcooDxbG8rV557Au9e4xH1ep8uTq7aK6uv16enVw1neIwNpJ1HEE7gxzIeamFWqNCB8yjJi0FdGC01I5QKybMWhnw3DtH0qEAcVRd7rEu4dbe5jBgfrAJg_3bSHljMY-zU-s8LgjBsAUJqUC1Cy-dk51Zr52Dzk-sL3vW7W49kOumNTL2z6DPJzHc2E26s9owDWY28_ERkNPvHZXRDqF01E8npbQrFqDVWnO1YJP0w3_SbdrlOF3KghJKGcZhVn3aq7qcSsnkn8xwZudHsE-PIP4AYwukkQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535580120</pqid></control><display><type>article</type><title>On-Board Real-Time Trajectory Planning for Fixed Wing Unmanned Aerial Vehicles in Extreme Environments</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Schellenberg, Ben ; Richardson, Tom ; Richards, Arthur ; Clarke, Robert ; Watson, Matt</creator><creatorcontrib>Schellenberg, Ben ; Richardson, Tom ; Richards, Arthur ; Clarke, Robert ; Watson, Matt</creatorcontrib><description>A team from the University of Bristol have developed a method of operating fixed wing Unmanned Aerial Vehicles (UAVs) at long-range and high-altitude over Volcán de Fuego in Guatemala for the purposes of volcanic monitoring and ash-sampling. Conventionally, the mission plans must be carefully designed prior to flight, to cope with altitude gains in excess of 3000 m, reaching 9 km from the ground control station and 4500 m above mean sea level. This means the climb route cannot be modified mid-flight. At these scales, atmospheric conditions change over the course of a flight and so a real-time trajectory planner (RTTP) is desirable, calculating a route on-board the aircraft. This paper presents an RTTP based around a genetic algorithm optimisation running on a Raspberry Pi 3 B+, the first of its kind to be flown on-board a UAV. Four flights are presented, each having calculated a new and valid trajectory on-board, from the ground control station to the summit region of Volcań de Fuego. The RTTP flights are shown to have approximately equivalent efficiency characteristics to conventionally planned missions. This technology is promising for the future of long-range UAV operations and further development is likely to see significant energy and efficiency savings.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19194085</identifier><identifier>PMID: 31546639</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aircraft ; Automation ; Behavior ; environmental monitoring ; Extreme environments ; Genetic algorithms ; Ground based control ; High altitude ; Onboard ; Planning ; Real time ; Robots ; Sea level ; Trajectory planning ; UAV navigation ; UAV path planning ; Unmanned aerial vehicles</subject><ispartof>Sensors (Basel, Switzerland), 2019-09, Vol.19 (19), p.4085</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-40c1a26d8a12edf4635ba5ad20fa6e6432c28646dea65038b582f1fdde4da323</citedby><cites>FETCH-LOGICAL-c512t-40c1a26d8a12edf4635ba5ad20fa6e6432c28646dea65038b582f1fdde4da323</cites><orcidid>0000-0001-7767-452X ; 0000-0001-9500-5514 ; 0000-0002-7296-6512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2535580120/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2535580120?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Schellenberg, Ben</creatorcontrib><creatorcontrib>Richardson, Tom</creatorcontrib><creatorcontrib>Richards, Arthur</creatorcontrib><creatorcontrib>Clarke, Robert</creatorcontrib><creatorcontrib>Watson, Matt</creatorcontrib><title>On-Board Real-Time Trajectory Planning for Fixed Wing Unmanned Aerial Vehicles in Extreme Environments</title><title>Sensors (Basel, Switzerland)</title><description>A team from the University of Bristol have developed a method of operating fixed wing Unmanned Aerial Vehicles (UAVs) at long-range and high-altitude over Volcán de Fuego in Guatemala for the purposes of volcanic monitoring and ash-sampling. Conventionally, the mission plans must be carefully designed prior to flight, to cope with altitude gains in excess of 3000 m, reaching 9 km from the ground control station and 4500 m above mean sea level. This means the climb route cannot be modified mid-flight. At these scales, atmospheric conditions change over the course of a flight and so a real-time trajectory planner (RTTP) is desirable, calculating a route on-board the aircraft. This paper presents an RTTP based around a genetic algorithm optimisation running on a Raspberry Pi 3 B+, the first of its kind to be flown on-board a UAV. Four flights are presented, each having calculated a new and valid trajectory on-board, from the ground control station to the summit region of Volcań de Fuego. The RTTP flights are shown to have approximately equivalent efficiency characteristics to conventionally planned missions. This technology is promising for the future of long-range UAV operations and further development is likely to see significant energy and efficiency savings.</description><subject>Aircraft</subject><subject>Automation</subject><subject>Behavior</subject><subject>environmental monitoring</subject><subject>Extreme environments</subject><subject>Genetic algorithms</subject><subject>Ground based control</subject><subject>High altitude</subject><subject>Onboard</subject><subject>Planning</subject><subject>Real time</subject><subject>Robots</subject><subject>Sea level</subject><subject>Trajectory planning</subject><subject>UAV navigation</subject><subject>UAV path planning</subject><subject>Unmanned aerial vehicles</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEoqVw4B9E4gKHFHv8sc4Fqa22tFKlIrTA0ZqNx1uvErvY2ar99yRsVVFO8_Xq0Tujqar3nB0L0bLPhbe8lcyoF9UhlyAbA8Be_pMfVG9K2TIGQgjzujoQXEmtRXtY-evYnCbMrv5O2DerMFC9yrilbkz5of7WY4whbmqfcn0e7snVv-byRxymwVSdUA7Y1z_pJnQ9lTrEenk_Zpowy3gXcooDxbG8rV557Au9e4xH1ep8uTq7aK6uv16enVw1neIwNpJ1HEE7gxzIeamFWqNCB8yjJi0FdGC01I5QKybMWhnw3DtH0qEAcVRd7rEu4dbe5jBgfrAJg_3bSHljMY-zU-s8LgjBsAUJqUC1Cy-dk51Zr52Dzk-sL3vW7W49kOumNTL2z6DPJzHc2E26s9owDWY28_ERkNPvHZXRDqF01E8npbQrFqDVWnO1YJP0w3_SbdrlOF3KghJKGcZhVn3aq7qcSsnkn8xwZudHsE-PIP4AYwukkQ</recordid><startdate>20190921</startdate><enddate>20190921</enddate><creator>Schellenberg, Ben</creator><creator>Richardson, Tom</creator><creator>Richards, Arthur</creator><creator>Clarke, Robert</creator><creator>Watson, Matt</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7767-452X</orcidid><orcidid>https://orcid.org/0000-0001-9500-5514</orcidid><orcidid>https://orcid.org/0000-0002-7296-6512</orcidid></search><sort><creationdate>20190921</creationdate><title>On-Board Real-Time Trajectory Planning for Fixed Wing Unmanned Aerial Vehicles in Extreme Environments</title><author>Schellenberg, Ben ; Richardson, Tom ; Richards, Arthur ; Clarke, Robert ; Watson, Matt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-40c1a26d8a12edf4635ba5ad20fa6e6432c28646dea65038b582f1fdde4da323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aircraft</topic><topic>Automation</topic><topic>Behavior</topic><topic>environmental monitoring</topic><topic>Extreme environments</topic><topic>Genetic algorithms</topic><topic>Ground based control</topic><topic>High altitude</topic><topic>Onboard</topic><topic>Planning</topic><topic>Real time</topic><topic>Robots</topic><topic>Sea level</topic><topic>Trajectory planning</topic><topic>UAV navigation</topic><topic>UAV path planning</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schellenberg, Ben</creatorcontrib><creatorcontrib>Richardson, Tom</creatorcontrib><creatorcontrib>Richards, Arthur</creatorcontrib><creatorcontrib>Clarke, Robert</creatorcontrib><creatorcontrib>Watson, Matt</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schellenberg, Ben</au><au>Richardson, Tom</au><au>Richards, Arthur</au><au>Clarke, Robert</au><au>Watson, Matt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-Board Real-Time Trajectory Planning for Fixed Wing Unmanned Aerial Vehicles in Extreme Environments</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2019-09-21</date><risdate>2019</risdate><volume>19</volume><issue>19</issue><spage>4085</spage><pages>4085-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>A team from the University of Bristol have developed a method of operating fixed wing Unmanned Aerial Vehicles (UAVs) at long-range and high-altitude over Volcán de Fuego in Guatemala for the purposes of volcanic monitoring and ash-sampling. Conventionally, the mission plans must be carefully designed prior to flight, to cope with altitude gains in excess of 3000 m, reaching 9 km from the ground control station and 4500 m above mean sea level. This means the climb route cannot be modified mid-flight. At these scales, atmospheric conditions change over the course of a flight and so a real-time trajectory planner (RTTP) is desirable, calculating a route on-board the aircraft. This paper presents an RTTP based around a genetic algorithm optimisation running on a Raspberry Pi 3 B+, the first of its kind to be flown on-board a UAV. Four flights are presented, each having calculated a new and valid trajectory on-board, from the ground control station to the summit region of Volcań de Fuego. The RTTP flights are shown to have approximately equivalent efficiency characteristics to conventionally planned missions. This technology is promising for the future of long-range UAV operations and further development is likely to see significant energy and efficiency savings.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>31546639</pmid><doi>10.3390/s19194085</doi><orcidid>https://orcid.org/0000-0001-7767-452X</orcidid><orcidid>https://orcid.org/0000-0001-9500-5514</orcidid><orcidid>https://orcid.org/0000-0002-7296-6512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2019-09, Vol.19 (19), p.4085
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_dfa7ea2807e3452597f4dd4c8bbdd2cf
source Publicly Available Content (ProQuest); PubMed Central
subjects Aircraft
Automation
Behavior
environmental monitoring
Extreme environments
Genetic algorithms
Ground based control
High altitude
Onboard
Planning
Real time
Robots
Sea level
Trajectory planning
UAV navigation
UAV path planning
Unmanned aerial vehicles
title On-Board Real-Time Trajectory Planning for Fixed Wing Unmanned Aerial Vehicles in Extreme Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-Board%20Real-Time%20Trajectory%20Planning%20for%20Fixed%20Wing%20Unmanned%20Aerial%20Vehicles%20in%20Extreme%20Environments&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Schellenberg,%20Ben&rft.date=2019-09-21&rft.volume=19&rft.issue=19&rft.spage=4085&rft.pages=4085-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19194085&rft_dat=%3Cproquest_doaj_%3E2296661570%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-40c1a26d8a12edf4635ba5ad20fa6e6432c28646dea65038b582f1fdde4da323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2535580120&rft_id=info:pmid/31546639&rfr_iscdi=true