Loading…
New estimators for estimating population total: an application to water demand in Thailand under unequal probability sampling without replacement for missing data
Water shortage could play an imperative role in the future due to an influx of water demand when compared to water supplies. Inadequate water could damage human life and other aspects related to living. This serious issue can be prevented by estimating the demand for water to bridge the small gap be...
Saved in:
Published in: | PeerJ (San Francisco, CA) CA), 2022-12, Vol.10, p.e14551-e14551, Article e14551 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c573t-5fd45553b4b42e63c5d7232e2b5569e11b5aca1e4f569069d9f7190be14d6daa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c573t-5fd45553b4b42e63c5d7232e2b5569e11b5aca1e4f569069d9f7190be14d6daa3 |
container_end_page | e14551 |
container_issue | |
container_start_page | e14551 |
container_title | PeerJ (San Francisco, CA) |
container_volume | 10 |
creator | Ponkaew, Chugiat Lawson, Nuanpan |
description | Water shortage could play an imperative role in the future due to an influx of water demand when compared to water supplies. Inadequate water could damage human life and other aspects related to living. This serious issue can be prevented by estimating the demand for water to bridge the small gap between demand and supplies for water. Some water consumption data recorded daily may be missing and could affect the estimated value of water demand. In this article, new ratio estimators for estimating population total are proposed under unequal probability sampling without replacement when data are missing. Two situations are considered: known or unknown mean of an auxiliary variable and missing data are missing at random for both study and auxiliary variables. The variance and associated estimators of the proposed estimators are investigated under a reverse framework. The proposed estimators are applied to data from simulation studies and empirical data on water demand in Thailand which contain some missing values, to assess the efficacies of the estimators. |
doi_str_mv | 10.7717/peerj.14551 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e00a539871fd4effbe4ed058c5d9a0f1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729847121</galeid><doaj_id>oai_doaj_org_article_e00a539871fd4effbe4ed058c5d9a0f1</doaj_id><sourcerecordid>A729847121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-5fd45553b4b42e63c5d7232e2b5569e11b5aca1e4f569069d9f7190be14d6daa3</originalsourceid><addsrcrecordid>eNptUk1r3DAQNaWlCWlOvRdBoRTKbi3LsuweAiH0IxDaS3oWY2u8q0WWHEnukr_TX1p5N5tmS6WDRjNPb6Snl2Wvab4UgoqPI6LfLGnJOX2WnRa0Eoua8eb5k_gkOw9hk6dRF1Ves5fZCas4y1nDT7Pf33FLMEQ9QHQ-kN75w1bbFRndOJkUOkuii2A-EbAExtHo7pAlW4joicIBrCLakts1aDPHk1WpMFm8m8CQ0bsWWm10vCcBhkSR-Lc6rt0UicfRQIcD2ri7wqBDmOsKIrzKXvRgAp4_rGfZzy-fb6--LW5-fL2-urxZdFywuOC9Sipw1pZtWWDFOq5EwQosWs6rBiltOXRAsezTNq8a1fSCNnmLtFSVAmBn2fWeVznYyNEnDfy9dKDlLuH8SoKPujMoMc-Bs6YWNDXFvm-xRJXzOvVsIO9p4rrYc41TO6Dq0rs8mCPS44rVa7lyv2QjeFULkQjePxB4dzelH5FJkg5NEhbdFGQhOK9zTosqQd_-A924ydsk1Yxidd0IUf5FrSA9QNvepb7dTCovRdHUpaDFfO_lf1Bppu_VnbPY65Q_OvDuyYE1gonr4Mw0myMcAz_sgZ13IXjsH8WguZytLHdWljsrJ_Sbp_o9Yg_GZX8ATpvyYQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753889774</pqid></control><display><type>article</type><title>New estimators for estimating population total: an application to water demand in Thailand under unequal probability sampling without replacement for missing data</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Ponkaew, Chugiat ; Lawson, Nuanpan</creator><creatorcontrib>Ponkaew, Chugiat ; Lawson, Nuanpan</creatorcontrib><description>Water shortage could play an imperative role in the future due to an influx of water demand when compared to water supplies. Inadequate water could damage human life and other aspects related to living. This serious issue can be prevented by estimating the demand for water to bridge the small gap between demand and supplies for water. Some water consumption data recorded daily may be missing and could affect the estimated value of water demand. In this article, new ratio estimators for estimating population total are proposed under unequal probability sampling without replacement when data are missing. Two situations are considered: known or unknown mean of an auxiliary variable and missing data are missing at random for both study and auxiliary variables. The variance and associated estimators of the proposed estimators are investigated under a reverse framework. The proposed estimators are applied to data from simulation studies and empirical data on water demand in Thailand which contain some missing values, to assess the efficacies of the estimators.</description><identifier>ISSN: 2167-8359</identifier><identifier>EISSN: 2167-8359</identifier><identifier>DOI: 10.7717/peerj.14551</identifier><identifier>PMID: 36530395</identifier><language>eng</language><publisher>United States: PeerJ. Ltd</publisher><subject>Computer Simulation ; Data Interpretation, Statistical ; Developing countries ; Ecohydrology ; Food, Water and Energy Nexus ; Humans ; Kurtosis ; LDCs ; Logistic regression ; Mean square errors ; Missing data ; Natural Resource Management ; Nonlinear estimator ; Population total ; Probability ; Rain ; Replantation ; Sampling ; Taylor linearization approach ; Thailand ; Unequal probability sampling without replacement ; Variables ; Water ; Water demand ; Water shortages ; Water supply</subject><ispartof>PeerJ (San Francisco, CA), 2022-12, Vol.10, p.e14551-e14551, Article e14551</ispartof><rights>2022 Ponkaew and Lawson.</rights><rights>COPYRIGHT 2022 PeerJ. Ltd.</rights><rights>2022 Ponkaew and Lawson. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Ponkaew and Lawson 2022 Ponkaew and Lawson</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-5fd45553b4b42e63c5d7232e2b5569e11b5aca1e4f569069d9f7190be14d6daa3</citedby><cites>FETCH-LOGICAL-c573t-5fd45553b4b42e63c5d7232e2b5569e11b5aca1e4f569069d9f7190be14d6daa3</cites><orcidid>0000-0001-8318-5474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2753889774/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2753889774?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36530395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ponkaew, Chugiat</creatorcontrib><creatorcontrib>Lawson, Nuanpan</creatorcontrib><title>New estimators for estimating population total: an application to water demand in Thailand under unequal probability sampling without replacement for missing data</title><title>PeerJ (San Francisco, CA)</title><addtitle>PeerJ</addtitle><description>Water shortage could play an imperative role in the future due to an influx of water demand when compared to water supplies. Inadequate water could damage human life and other aspects related to living. This serious issue can be prevented by estimating the demand for water to bridge the small gap between demand and supplies for water. Some water consumption data recorded daily may be missing and could affect the estimated value of water demand. In this article, new ratio estimators for estimating population total are proposed under unequal probability sampling without replacement when data are missing. Two situations are considered: known or unknown mean of an auxiliary variable and missing data are missing at random for both study and auxiliary variables. The variance and associated estimators of the proposed estimators are investigated under a reverse framework. The proposed estimators are applied to data from simulation studies and empirical data on water demand in Thailand which contain some missing values, to assess the efficacies of the estimators.</description><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Developing countries</subject><subject>Ecohydrology</subject><subject>Food, Water and Energy Nexus</subject><subject>Humans</subject><subject>Kurtosis</subject><subject>LDCs</subject><subject>Logistic regression</subject><subject>Mean square errors</subject><subject>Missing data</subject><subject>Natural Resource Management</subject><subject>Nonlinear estimator</subject><subject>Population total</subject><subject>Probability</subject><subject>Rain</subject><subject>Replantation</subject><subject>Sampling</subject><subject>Taylor linearization approach</subject><subject>Thailand</subject><subject>Unequal probability sampling without replacement</subject><subject>Variables</subject><subject>Water</subject><subject>Water demand</subject><subject>Water shortages</subject><subject>Water supply</subject><issn>2167-8359</issn><issn>2167-8359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1r3DAQNaWlCWlOvRdBoRTKbi3LsuweAiH0IxDaS3oWY2u8q0WWHEnukr_TX1p5N5tmS6WDRjNPb6Snl2Wvab4UgoqPI6LfLGnJOX2WnRa0Eoua8eb5k_gkOw9hk6dRF1Ves5fZCas4y1nDT7Pf33FLMEQ9QHQ-kN75w1bbFRndOJkUOkuii2A-EbAExtHo7pAlW4joicIBrCLakts1aDPHk1WpMFm8m8CQ0bsWWm10vCcBhkSR-Lc6rt0UicfRQIcD2ri7wqBDmOsKIrzKXvRgAp4_rGfZzy-fb6--LW5-fL2-urxZdFywuOC9Sipw1pZtWWDFOq5EwQosWs6rBiltOXRAsezTNq8a1fSCNnmLtFSVAmBn2fWeVznYyNEnDfy9dKDlLuH8SoKPujMoMc-Bs6YWNDXFvm-xRJXzOvVsIO9p4rrYc41TO6Dq0rs8mCPS44rVa7lyv2QjeFULkQjePxB4dzelH5FJkg5NEhbdFGQhOK9zTosqQd_-A924ydsk1Yxidd0IUf5FrSA9QNvepb7dTCovRdHUpaDFfO_lf1Bppu_VnbPY65Q_OvDuyYE1gonr4Mw0myMcAz_sgZ13IXjsH8WguZytLHdWljsrJ_Sbp_o9Yg_GZX8ATpvyYQ</recordid><startdate>20221213</startdate><enddate>20221213</enddate><creator>Ponkaew, Chugiat</creator><creator>Lawson, Nuanpan</creator><general>PeerJ. Ltd</general><general>PeerJ, Inc</general><general>PeerJ Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8318-5474</orcidid></search><sort><creationdate>20221213</creationdate><title>New estimators for estimating population total: an application to water demand in Thailand under unequal probability sampling without replacement for missing data</title><author>Ponkaew, Chugiat ; Lawson, Nuanpan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-5fd45553b4b42e63c5d7232e2b5569e11b5aca1e4f569069d9f7190be14d6daa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Developing countries</topic><topic>Ecohydrology</topic><topic>Food, Water and Energy Nexus</topic><topic>Humans</topic><topic>Kurtosis</topic><topic>LDCs</topic><topic>Logistic regression</topic><topic>Mean square errors</topic><topic>Missing data</topic><topic>Natural Resource Management</topic><topic>Nonlinear estimator</topic><topic>Population total</topic><topic>Probability</topic><topic>Rain</topic><topic>Replantation</topic><topic>Sampling</topic><topic>Taylor linearization approach</topic><topic>Thailand</topic><topic>Unequal probability sampling without replacement</topic><topic>Variables</topic><topic>Water</topic><topic>Water demand</topic><topic>Water shortages</topic><topic>Water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ponkaew, Chugiat</creatorcontrib><creatorcontrib>Lawson, Nuanpan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ (San Francisco, CA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponkaew, Chugiat</au><au>Lawson, Nuanpan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New estimators for estimating population total: an application to water demand in Thailand under unequal probability sampling without replacement for missing data</atitle><jtitle>PeerJ (San Francisco, CA)</jtitle><addtitle>PeerJ</addtitle><date>2022-12-13</date><risdate>2022</risdate><volume>10</volume><spage>e14551</spage><epage>e14551</epage><pages>e14551-e14551</pages><artnum>e14551</artnum><issn>2167-8359</issn><eissn>2167-8359</eissn><abstract>Water shortage could play an imperative role in the future due to an influx of water demand when compared to water supplies. Inadequate water could damage human life and other aspects related to living. This serious issue can be prevented by estimating the demand for water to bridge the small gap between demand and supplies for water. Some water consumption data recorded daily may be missing and could affect the estimated value of water demand. In this article, new ratio estimators for estimating population total are proposed under unequal probability sampling without replacement when data are missing. Two situations are considered: known or unknown mean of an auxiliary variable and missing data are missing at random for both study and auxiliary variables. The variance and associated estimators of the proposed estimators are investigated under a reverse framework. The proposed estimators are applied to data from simulation studies and empirical data on water demand in Thailand which contain some missing values, to assess the efficacies of the estimators.</abstract><cop>United States</cop><pub>PeerJ. Ltd</pub><pmid>36530395</pmid><doi>10.7717/peerj.14551</doi><orcidid>https://orcid.org/0000-0001-8318-5474</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2167-8359 |
ispartof | PeerJ (San Francisco, CA), 2022-12, Vol.10, p.e14551-e14551, Article e14551 |
issn | 2167-8359 2167-8359 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e00a539871fd4effbe4ed058c5d9a0f1 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Computer Simulation Data Interpretation, Statistical Developing countries Ecohydrology Food, Water and Energy Nexus Humans Kurtosis LDCs Logistic regression Mean square errors Missing data Natural Resource Management Nonlinear estimator Population total Probability Rain Replantation Sampling Taylor linearization approach Thailand Unequal probability sampling without replacement Variables Water Water demand Water shortages Water supply |
title | New estimators for estimating population total: an application to water demand in Thailand under unequal probability sampling without replacement for missing data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A46%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20estimators%20for%20estimating%20population%20total:%20an%20application%20to%20water%20demand%20in%20Thailand%20under%20unequal%20probability%20sampling%20without%20replacement%20for%20missing%20data&rft.jtitle=PeerJ%20(San%20Francisco,%20CA)&rft.au=Ponkaew,%20Chugiat&rft.date=2022-12-13&rft.volume=10&rft.spage=e14551&rft.epage=e14551&rft.pages=e14551-e14551&rft.artnum=e14551&rft.issn=2167-8359&rft.eissn=2167-8359&rft_id=info:doi/10.7717/peerj.14551&rft_dat=%3Cgale_doaj_%3EA729847121%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-5fd45553b4b42e63c5d7232e2b5569e11b5aca1e4f569069d9f7190be14d6daa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2753889774&rft_id=info:pmid/36530395&rft_galeid=A729847121&rfr_iscdi=true |