Loading…
High-resolution Transmission Spectroscopy of Ultrahot Jupiter WASP–33b with NEID
We report an attempt to detect molecular and atomic species in the atmosphere of the ultrahot Jupiter WASP-33b using the high-resolution echelle spectrograph NEID with a wavelength coverage of 380–930 nm. By analyzing the transmission spectrum of WASP-33b using the line-by-line technique and the cro...
Saved in:
Published in: | The Astronomical journal 2024-01, Vol.167 (1), p.36 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report an attempt to detect molecular and atomic species in the atmosphere of the ultrahot Jupiter WASP-33b using the high-resolution echelle spectrograph NEID with a wavelength coverage of 380–930 nm. By analyzing the transmission spectrum of WASP-33b using the line-by-line technique and the cross-correlation technique, we confirm previous detection of H
α
, H
β
, H
γ
, and Ca
ii
infrared triplets. We find no evidence for a significant day-to-night wind in WASP-33b, taking into account the effects of stellar pulsations using a relatively novel Gaussian process method and poorly constrained systemic velocity measurements. We also detect the previously reported pretransit absorption signal, which may be a pulsation mode induced by the planet. Combined with previous CARMENES and HARPS-N observations, we report the nondetection of TiO, Ti
i
, and V
i
in the transmission spectrum, while they were already detected in the dayside atmosphere of WASP-33b. This implies a difference in the chemical compositions and abundances between the dayside and terminator atmospheres of WASP-33b and certainly requires further improvements in the sensitivity of the detection methods. |
---|---|
ISSN: | 0004-6256 1538-3881 |
DOI: | 10.3847/1538-3881/ad10a3 |