Loading…

Design of two-dimensional reflective imaging systems: an approach based on inverse methods

Imaging systems are inherently prone to aberrations. We present an optimization method to design two-dimensional (2D) freeform reflectors that minimize aberrations for various parallel ray beams incident on the optical system. We iteratively design reflectors using inverse methods from non-imaging o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematics in industry 2024-12, Vol.14 (1), p.25-21, Article 25
Main Authors: Verma, Sanjana, Anthonissen, Martijn J. H., ten Thije Boonkkamp, Jan H. M., IJzerman, Wilbert L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Imaging systems are inherently prone to aberrations. We present an optimization method to design two-dimensional (2D) freeform reflectors that minimize aberrations for various parallel ray beams incident on the optical system. We iteratively design reflectors using inverse methods from non-imaging optics and optimize them to obtain a system that produces minimal aberrations. This is done by minimizing a merit function that quantifies aberrations and is dependent on the energy distributions at the source and target of an optical system, which are input parameters essential for inverse freeform design. The proposed method is tested for two configurations: a single-reflector system and a double-reflector system. Classical designs consisting of aspheric elements are well-known for their ability to minimize aberrations. We compare the performance of our freeform optical elements with classical designs. The optimized freeform designs outperform the classical designs in both configurations.
ISSN:2190-5983
2190-5983
DOI:10.1186/s13362-024-00164-7