Loading…
Prediction of vancomycin plasma concentration in elderly patients based on multi-algorithm mining combined with population pharmacokinetics
The pharmacokinetics of vancomycin exhibit significant inter-individual variability, particularly among elderly patients. This study aims to develop a predictive model that integrates machine learning with population pharmacokinetics (popPK) to facilitate personalized medication management for this...
Saved in:
Published in: | Scientific reports 2024-11, Vol.14 (1), p.27165-15, Article 27165 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-7cc558f526578f6653d083f2e323d2cc9a4d598c69f32f897a73c1e6466b85d93 |
container_end_page | 15 |
container_issue | 1 |
container_start_page | 27165 |
container_title | Scientific reports |
container_volume | 14 |
creator | Ma, Pan Ma, Huan Liu, Ruixiang Wen, Haini Li, Haisheng Huang, Yifan Li, Ying Xiong, Lirong Xie, Linli Wang, Qian |
description | The pharmacokinetics of vancomycin exhibit significant inter-individual variability, particularly among elderly patients. This study aims to develop a predictive model that integrates machine learning with population pharmacokinetics (popPK) to facilitate personalized medication management for this demographic. A retrospective analysis incorporating 33 features, including popPK parameters such as clearance and volume of distribution. A combination of multiple algorithms and Shapley Additive Explanations was utilized for feature selection to identify the most influential factors affecting drug concentrations. The performance of each algorithm with popPK parameters was superior to that without popPK parameters. Our final ensemble model, composed of support vector regression, light gradient boosting machine, and categorical boosting in a 6:3:1 ratio, included 16 optimized features. This model demonstrated superior predictive accuracy compared to models utilizing all features, with testing group metrics including an
R
2 of 0.656, mean absolute error of 3.458, mean square error of 28.103, absolute accuracy within ± 5 mg/L of 81.82%, and relative accuracy within ± 30% of 76.62%. This study presents a rapid and cost-effective predictive model for estimating vancomycin plasma concentrations in elderly patients. The model offers a valuable tool for clinicians to accurately determine effective plasma concentration ranges and tailor individualized dosing regimens, thereby enhancing therapeutic outcomes and safety. |
doi_str_mv | 10.1038/s41598-024-78558-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e03f7f3f82924739b2076f61bbf834be</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e03f7f3f82924739b2076f61bbf834be</doaj_id><sourcerecordid>3125884484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-7cc558f526578f6653d083f2e323d2cc9a4d598c69f32f897a73c1e6466b85d93</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEolXpC7BAkdiwIGD72ImzrFoKlSrBAthajmNPPSR2sBOqeQZeuqeToVwWeGPrnM-fL_qL4jklbygB-TZzKlpZEcarRgohK_qoOGaEi4oBY4__WB8VpzlvCQ7BWk7bp8URtIJSaORx8fNTsr03s4-hjK78oYOJ4874UE6DzqMuTQzGhjnpPYJ1O_Q2Dbtywgo2ctnpbPsSm-MyzL7SwyYmP9-M5eiDDxs0jJ0PiNxitZzitAyrbLrRadQmfsPu7E1-Vjxxesj29DCfFF8u330-_1Bdf3x_dX52XRlOYK4aY_C9TrBaNNLVtYCeSHDMAoOeGdNq3uPXmLp1wJxsG92Aobbmdd1J0bdwUlyt3j7qrZqSH3Xaqai92hdi2iid8EKDVZaAaxw4yVrGG2g7Rpra1bTrnATeWXS9Xl351k5L95ftwn8929uWRQkOUgLir1Z8SvH7YvOsRp-NHQYdbFyyAsokMFJTiejLf9BtXFLAj7mnhJScS44UWymTYs7JuocbUKLug6LWoCgMitoHRVHc9OKgXrrR9g9bfsUCATi8ClthY9Pvs_-jvQO3Dcqb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125884484</pqid></control><display><type>article</type><title>Prediction of vancomycin plasma concentration in elderly patients based on multi-algorithm mining combined with population pharmacokinetics</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ma, Pan ; Ma, Huan ; Liu, Ruixiang ; Wen, Haini ; Li, Haisheng ; Huang, Yifan ; Li, Ying ; Xiong, Lirong ; Xie, Linli ; Wang, Qian</creator><creatorcontrib>Ma, Pan ; Ma, Huan ; Liu, Ruixiang ; Wen, Haini ; Li, Haisheng ; Huang, Yifan ; Li, Ying ; Xiong, Lirong ; Xie, Linli ; Wang, Qian</creatorcontrib><description>The pharmacokinetics of vancomycin exhibit significant inter-individual variability, particularly among elderly patients. This study aims to develop a predictive model that integrates machine learning with population pharmacokinetics (popPK) to facilitate personalized medication management for this demographic. A retrospective analysis incorporating 33 features, including popPK parameters such as clearance and volume of distribution. A combination of multiple algorithms and Shapley Additive Explanations was utilized for feature selection to identify the most influential factors affecting drug concentrations. The performance of each algorithm with popPK parameters was superior to that without popPK parameters. Our final ensemble model, composed of support vector regression, light gradient boosting machine, and categorical boosting in a 6:3:1 ratio, included 16 optimized features. This model demonstrated superior predictive accuracy compared to models utilizing all features, with testing group metrics including an
R
2 of 0.656, mean absolute error of 3.458, mean square error of 28.103, absolute accuracy within ± 5 mg/L of 81.82%, and relative accuracy within ± 30% of 76.62%. This study presents a rapid and cost-effective predictive model for estimating vancomycin plasma concentrations in elderly patients. The model offers a valuable tool for clinicians to accurately determine effective plasma concentration ranges and tailor individualized dosing regimens, thereby enhancing therapeutic outcomes and safety.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-78558-1</identifier><identifier>PMID: 39511378</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154 ; 631/154/436 ; 631/154/436/108 ; 631/154/436/1729 ; 631/154/436/2388 ; Accuracy ; Aged ; Aged, 80 and over ; Algorithms ; Anti-Bacterial Agents - blood ; Anti-Bacterial Agents - pharmacokinetics ; Antibiotics ; Elderly ; Feature selection ; Female ; Humanities and Social Sciences ; Humans ; Machine Learning ; Male ; Models, Biological ; multidisciplinary ; Pharmacokinetics ; Population pharmacokinetics ; Population studies ; Precision medicine ; Prediction models ; Retrospective Studies ; Science ; Science (multidisciplinary) ; Vancomycin ; Vancomycin - blood ; Vancomycin - pharmacokinetics</subject><ispartof>Scientific reports, 2024-11, Vol.14 (1), p.27165-15, Article 27165</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c403t-7cc558f526578f6653d083f2e323d2cc9a4d598c69f32f897a73c1e6466b85d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3125884484/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3125884484?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25731,27901,27902,36989,36990,44566,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39511378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-543883$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Pan</creatorcontrib><creatorcontrib>Ma, Huan</creatorcontrib><creatorcontrib>Liu, Ruixiang</creatorcontrib><creatorcontrib>Wen, Haini</creatorcontrib><creatorcontrib>Li, Haisheng</creatorcontrib><creatorcontrib>Huang, Yifan</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Xiong, Lirong</creatorcontrib><creatorcontrib>Xie, Linli</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><title>Prediction of vancomycin plasma concentration in elderly patients based on multi-algorithm mining combined with population pharmacokinetics</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The pharmacokinetics of vancomycin exhibit significant inter-individual variability, particularly among elderly patients. This study aims to develop a predictive model that integrates machine learning with population pharmacokinetics (popPK) to facilitate personalized medication management for this demographic. A retrospective analysis incorporating 33 features, including popPK parameters such as clearance and volume of distribution. A combination of multiple algorithms and Shapley Additive Explanations was utilized for feature selection to identify the most influential factors affecting drug concentrations. The performance of each algorithm with popPK parameters was superior to that without popPK parameters. Our final ensemble model, composed of support vector regression, light gradient boosting machine, and categorical boosting in a 6:3:1 ratio, included 16 optimized features. This model demonstrated superior predictive accuracy compared to models utilizing all features, with testing group metrics including an
R
2 of 0.656, mean absolute error of 3.458, mean square error of 28.103, absolute accuracy within ± 5 mg/L of 81.82%, and relative accuracy within ± 30% of 76.62%. This study presents a rapid and cost-effective predictive model for estimating vancomycin plasma concentrations in elderly patients. The model offers a valuable tool for clinicians to accurately determine effective plasma concentration ranges and tailor individualized dosing regimens, thereby enhancing therapeutic outcomes and safety.</description><subject>631/154</subject><subject>631/154/436</subject><subject>631/154/436/108</subject><subject>631/154/436/1729</subject><subject>631/154/436/2388</subject><subject>Accuracy</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Anti-Bacterial Agents - blood</subject><subject>Anti-Bacterial Agents - pharmacokinetics</subject><subject>Antibiotics</subject><subject>Elderly</subject><subject>Feature selection</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Pharmacokinetics</subject><subject>Population pharmacokinetics</subject><subject>Population studies</subject><subject>Precision medicine</subject><subject>Prediction models</subject><subject>Retrospective Studies</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Vancomycin</subject><subject>Vancomycin - blood</subject><subject>Vancomycin - pharmacokinetics</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1DAUhiMEolXpC7BAkdiwIGD72ImzrFoKlSrBAthajmNPPSR2sBOqeQZeuqeToVwWeGPrnM-fL_qL4jklbygB-TZzKlpZEcarRgohK_qoOGaEi4oBY4__WB8VpzlvCQ7BWk7bp8URtIJSaORx8fNTsr03s4-hjK78oYOJ4874UE6DzqMuTQzGhjnpPYJ1O_Q2Dbtywgo2ctnpbPsSm-MyzL7SwyYmP9-M5eiDDxs0jJ0PiNxitZzitAyrbLrRadQmfsPu7E1-Vjxxesj29DCfFF8u330-_1Bdf3x_dX52XRlOYK4aY_C9TrBaNNLVtYCeSHDMAoOeGdNq3uPXmLp1wJxsG92Aobbmdd1J0bdwUlyt3j7qrZqSH3Xaqai92hdi2iid8EKDVZaAaxw4yVrGG2g7Rpra1bTrnATeWXS9Xl351k5L95ftwn8929uWRQkOUgLir1Z8SvH7YvOsRp-NHQYdbFyyAsokMFJTiejLf9BtXFLAj7mnhJScS44UWymTYs7JuocbUKLug6LWoCgMitoHRVHc9OKgXrrR9g9bfsUCATi8ClthY9Pvs_-jvQO3Dcqb</recordid><startdate>20241108</startdate><enddate>20241108</enddate><creator>Ma, Pan</creator><creator>Ma, Huan</creator><creator>Liu, Ruixiang</creator><creator>Wen, Haini</creator><creator>Li, Haisheng</creator><creator>Huang, Yifan</creator><creator>Li, Ying</creator><creator>Xiong, Lirong</creator><creator>Xie, Linli</creator><creator>Wang, Qian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20241108</creationdate><title>Prediction of vancomycin plasma concentration in elderly patients based on multi-algorithm mining combined with population pharmacokinetics</title><author>Ma, Pan ; Ma, Huan ; Liu, Ruixiang ; Wen, Haini ; Li, Haisheng ; Huang, Yifan ; Li, Ying ; Xiong, Lirong ; Xie, Linli ; Wang, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-7cc558f526578f6653d083f2e323d2cc9a4d598c69f32f897a73c1e6466b85d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/154</topic><topic>631/154/436</topic><topic>631/154/436/108</topic><topic>631/154/436/1729</topic><topic>631/154/436/2388</topic><topic>Accuracy</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Anti-Bacterial Agents - blood</topic><topic>Anti-Bacterial Agents - pharmacokinetics</topic><topic>Antibiotics</topic><topic>Elderly</topic><topic>Feature selection</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Pharmacokinetics</topic><topic>Population pharmacokinetics</topic><topic>Population studies</topic><topic>Precision medicine</topic><topic>Prediction models</topic><topic>Retrospective Studies</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Vancomycin</topic><topic>Vancomycin - blood</topic><topic>Vancomycin - pharmacokinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Pan</creatorcontrib><creatorcontrib>Ma, Huan</creatorcontrib><creatorcontrib>Liu, Ruixiang</creatorcontrib><creatorcontrib>Wen, Haini</creatorcontrib><creatorcontrib>Li, Haisheng</creatorcontrib><creatorcontrib>Huang, Yifan</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Xiong, Lirong</creatorcontrib><creatorcontrib>Xie, Linli</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Pan</au><au>Ma, Huan</au><au>Liu, Ruixiang</au><au>Wen, Haini</au><au>Li, Haisheng</au><au>Huang, Yifan</au><au>Li, Ying</au><au>Xiong, Lirong</au><au>Xie, Linli</au><au>Wang, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of vancomycin plasma concentration in elderly patients based on multi-algorithm mining combined with population pharmacokinetics</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-11-08</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>27165</spage><epage>15</epage><pages>27165-15</pages><artnum>27165</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The pharmacokinetics of vancomycin exhibit significant inter-individual variability, particularly among elderly patients. This study aims to develop a predictive model that integrates machine learning with population pharmacokinetics (popPK) to facilitate personalized medication management for this demographic. A retrospective analysis incorporating 33 features, including popPK parameters such as clearance and volume of distribution. A combination of multiple algorithms and Shapley Additive Explanations was utilized for feature selection to identify the most influential factors affecting drug concentrations. The performance of each algorithm with popPK parameters was superior to that without popPK parameters. Our final ensemble model, composed of support vector regression, light gradient boosting machine, and categorical boosting in a 6:3:1 ratio, included 16 optimized features. This model demonstrated superior predictive accuracy compared to models utilizing all features, with testing group metrics including an
R
2 of 0.656, mean absolute error of 3.458, mean square error of 28.103, absolute accuracy within ± 5 mg/L of 81.82%, and relative accuracy within ± 30% of 76.62%. This study presents a rapid and cost-effective predictive model for estimating vancomycin plasma concentrations in elderly patients. The model offers a valuable tool for clinicians to accurately determine effective plasma concentration ranges and tailor individualized dosing regimens, thereby enhancing therapeutic outcomes and safety.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39511378</pmid><doi>10.1038/s41598-024-78558-1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-11, Vol.14 (1), p.27165-15, Article 27165 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e03f7f3f82924739b2076f61bbf834be |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/154 631/154/436 631/154/436/108 631/154/436/1729 631/154/436/2388 Accuracy Aged Aged, 80 and over Algorithms Anti-Bacterial Agents - blood Anti-Bacterial Agents - pharmacokinetics Antibiotics Elderly Feature selection Female Humanities and Social Sciences Humans Machine Learning Male Models, Biological multidisciplinary Pharmacokinetics Population pharmacokinetics Population studies Precision medicine Prediction models Retrospective Studies Science Science (multidisciplinary) Vancomycin Vancomycin - blood Vancomycin - pharmacokinetics |
title | Prediction of vancomycin plasma concentration in elderly patients based on multi-algorithm mining combined with population pharmacokinetics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20vancomycin%20plasma%20concentration%20in%20elderly%20patients%20based%20on%20multi-algorithm%20mining%20combined%20with%20population%20pharmacokinetics&rft.jtitle=Scientific%20reports&rft.au=Ma,%20Pan&rft.date=2024-11-08&rft.volume=14&rft.issue=1&rft.spage=27165&rft.epage=15&rft.pages=27165-15&rft.artnum=27165&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-78558-1&rft_dat=%3Cproquest_doaj_%3E3125884484%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-7cc558f526578f6653d083f2e323d2cc9a4d598c69f32f897a73c1e6466b85d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3125884484&rft_id=info:pmid/39511378&rfr_iscdi=true |