Loading…

Prediction of vancomycin plasma concentration in elderly patients based on multi-algorithm mining combined with population pharmacokinetics

The pharmacokinetics of vancomycin exhibit significant inter-individual variability, particularly among elderly patients. This study aims to develop a predictive model that integrates machine learning with population pharmacokinetics (popPK) to facilitate personalized medication management for this...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-11, Vol.14 (1), p.27165-15, Article 27165
Main Authors: Ma, Pan, Ma, Huan, Liu, Ruixiang, Wen, Haini, Li, Haisheng, Huang, Yifan, Li, Ying, Xiong, Lirong, Xie, Linli, Wang, Qian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c403t-7cc558f526578f6653d083f2e323d2cc9a4d598c69f32f897a73c1e6466b85d93
container_end_page 15
container_issue 1
container_start_page 27165
container_title Scientific reports
container_volume 14
creator Ma, Pan
Ma, Huan
Liu, Ruixiang
Wen, Haini
Li, Haisheng
Huang, Yifan
Li, Ying
Xiong, Lirong
Xie, Linli
Wang, Qian
description The pharmacokinetics of vancomycin exhibit significant inter-individual variability, particularly among elderly patients. This study aims to develop a predictive model that integrates machine learning with population pharmacokinetics (popPK) to facilitate personalized medication management for this demographic. A retrospective analysis incorporating 33 features, including popPK parameters such as clearance and volume of distribution. A combination of multiple algorithms and Shapley Additive Explanations was utilized for feature selection to identify the most influential factors affecting drug concentrations. The performance of each algorithm with popPK parameters was superior to that without popPK parameters. Our final ensemble model, composed of support vector regression, light gradient boosting machine, and categorical boosting in a 6:3:1 ratio, included 16 optimized features. This model demonstrated superior predictive accuracy compared to models utilizing all features, with testing group metrics including an R 2 of 0.656, mean absolute error of 3.458, mean square error of 28.103, absolute accuracy within ± 5 mg/L of 81.82%, and relative accuracy within ± 30% of 76.62%. This study presents a rapid and cost-effective predictive model for estimating vancomycin plasma concentrations in elderly patients. The model offers a valuable tool for clinicians to accurately determine effective plasma concentration ranges and tailor individualized dosing regimens, thereby enhancing therapeutic outcomes and safety.
doi_str_mv 10.1038/s41598-024-78558-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e03f7f3f82924739b2076f61bbf834be</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e03f7f3f82924739b2076f61bbf834be</doaj_id><sourcerecordid>3125884484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-7cc558f526578f6653d083f2e323d2cc9a4d598c69f32f897a73c1e6466b85d93</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEolXpC7BAkdiwIGD72ImzrFoKlSrBAthajmNPPSR2sBOqeQZeuqeToVwWeGPrnM-fL_qL4jklbygB-TZzKlpZEcarRgohK_qoOGaEi4oBY4__WB8VpzlvCQ7BWk7bp8URtIJSaORx8fNTsr03s4-hjK78oYOJ4874UE6DzqMuTQzGhjnpPYJ1O_Q2Dbtywgo2ctnpbPsSm-MyzL7SwyYmP9-M5eiDDxs0jJ0PiNxitZzitAyrbLrRadQmfsPu7E1-Vjxxesj29DCfFF8u330-_1Bdf3x_dX52XRlOYK4aY_C9TrBaNNLVtYCeSHDMAoOeGdNq3uPXmLp1wJxsG92Aobbmdd1J0bdwUlyt3j7qrZqSH3Xaqai92hdi2iid8EKDVZaAaxw4yVrGG2g7Rpra1bTrnATeWXS9Xl351k5L95ftwn8929uWRQkOUgLir1Z8SvH7YvOsRp-NHQYdbFyyAsokMFJTiejLf9BtXFLAj7mnhJScS44UWymTYs7JuocbUKLug6LWoCgMitoHRVHc9OKgXrrR9g9bfsUCATi8ClthY9Pvs_-jvQO3Dcqb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125884484</pqid></control><display><type>article</type><title>Prediction of vancomycin plasma concentration in elderly patients based on multi-algorithm mining combined with population pharmacokinetics</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ma, Pan ; Ma, Huan ; Liu, Ruixiang ; Wen, Haini ; Li, Haisheng ; Huang, Yifan ; Li, Ying ; Xiong, Lirong ; Xie, Linli ; Wang, Qian</creator><creatorcontrib>Ma, Pan ; Ma, Huan ; Liu, Ruixiang ; Wen, Haini ; Li, Haisheng ; Huang, Yifan ; Li, Ying ; Xiong, Lirong ; Xie, Linli ; Wang, Qian</creatorcontrib><description>The pharmacokinetics of vancomycin exhibit significant inter-individual variability, particularly among elderly patients. This study aims to develop a predictive model that integrates machine learning with population pharmacokinetics (popPK) to facilitate personalized medication management for this demographic. A retrospective analysis incorporating 33 features, including popPK parameters such as clearance and volume of distribution. A combination of multiple algorithms and Shapley Additive Explanations was utilized for feature selection to identify the most influential factors affecting drug concentrations. The performance of each algorithm with popPK parameters was superior to that without popPK parameters. Our final ensemble model, composed of support vector regression, light gradient boosting machine, and categorical boosting in a 6:3:1 ratio, included 16 optimized features. This model demonstrated superior predictive accuracy compared to models utilizing all features, with testing group metrics including an R 2 of 0.656, mean absolute error of 3.458, mean square error of 28.103, absolute accuracy within ± 5 mg/L of 81.82%, and relative accuracy within ± 30% of 76.62%. This study presents a rapid and cost-effective predictive model for estimating vancomycin plasma concentrations in elderly patients. The model offers a valuable tool for clinicians to accurately determine effective plasma concentration ranges and tailor individualized dosing regimens, thereby enhancing therapeutic outcomes and safety.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-78558-1</identifier><identifier>PMID: 39511378</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154 ; 631/154/436 ; 631/154/436/108 ; 631/154/436/1729 ; 631/154/436/2388 ; Accuracy ; Aged ; Aged, 80 and over ; Algorithms ; Anti-Bacterial Agents - blood ; Anti-Bacterial Agents - pharmacokinetics ; Antibiotics ; Elderly ; Feature selection ; Female ; Humanities and Social Sciences ; Humans ; Machine Learning ; Male ; Models, Biological ; multidisciplinary ; Pharmacokinetics ; Population pharmacokinetics ; Population studies ; Precision medicine ; Prediction models ; Retrospective Studies ; Science ; Science (multidisciplinary) ; Vancomycin ; Vancomycin - blood ; Vancomycin - pharmacokinetics</subject><ispartof>Scientific reports, 2024-11, Vol.14 (1), p.27165-15, Article 27165</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c403t-7cc558f526578f6653d083f2e323d2cc9a4d598c69f32f897a73c1e6466b85d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3125884484/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3125884484?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25731,27901,27902,36989,36990,44566,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39511378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-543883$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Pan</creatorcontrib><creatorcontrib>Ma, Huan</creatorcontrib><creatorcontrib>Liu, Ruixiang</creatorcontrib><creatorcontrib>Wen, Haini</creatorcontrib><creatorcontrib>Li, Haisheng</creatorcontrib><creatorcontrib>Huang, Yifan</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Xiong, Lirong</creatorcontrib><creatorcontrib>Xie, Linli</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><title>Prediction of vancomycin plasma concentration in elderly patients based on multi-algorithm mining combined with population pharmacokinetics</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The pharmacokinetics of vancomycin exhibit significant inter-individual variability, particularly among elderly patients. This study aims to develop a predictive model that integrates machine learning with population pharmacokinetics (popPK) to facilitate personalized medication management for this demographic. A retrospective analysis incorporating 33 features, including popPK parameters such as clearance and volume of distribution. A combination of multiple algorithms and Shapley Additive Explanations was utilized for feature selection to identify the most influential factors affecting drug concentrations. The performance of each algorithm with popPK parameters was superior to that without popPK parameters. Our final ensemble model, composed of support vector regression, light gradient boosting machine, and categorical boosting in a 6:3:1 ratio, included 16 optimized features. This model demonstrated superior predictive accuracy compared to models utilizing all features, with testing group metrics including an R 2 of 0.656, mean absolute error of 3.458, mean square error of 28.103, absolute accuracy within ± 5 mg/L of 81.82%, and relative accuracy within ± 30% of 76.62%. This study presents a rapid and cost-effective predictive model for estimating vancomycin plasma concentrations in elderly patients. The model offers a valuable tool for clinicians to accurately determine effective plasma concentration ranges and tailor individualized dosing regimens, thereby enhancing therapeutic outcomes and safety.</description><subject>631/154</subject><subject>631/154/436</subject><subject>631/154/436/108</subject><subject>631/154/436/1729</subject><subject>631/154/436/2388</subject><subject>Accuracy</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Anti-Bacterial Agents - blood</subject><subject>Anti-Bacterial Agents - pharmacokinetics</subject><subject>Antibiotics</subject><subject>Elderly</subject><subject>Feature selection</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Pharmacokinetics</subject><subject>Population pharmacokinetics</subject><subject>Population studies</subject><subject>Precision medicine</subject><subject>Prediction models</subject><subject>Retrospective Studies</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Vancomycin</subject><subject>Vancomycin - blood</subject><subject>Vancomycin - pharmacokinetics</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1DAUhiMEolXpC7BAkdiwIGD72ImzrFoKlSrBAthajmNPPSR2sBOqeQZeuqeToVwWeGPrnM-fL_qL4jklbygB-TZzKlpZEcarRgohK_qoOGaEi4oBY4__WB8VpzlvCQ7BWk7bp8URtIJSaORx8fNTsr03s4-hjK78oYOJ4874UE6DzqMuTQzGhjnpPYJ1O_Q2Dbtywgo2ctnpbPsSm-MyzL7SwyYmP9-M5eiDDxs0jJ0PiNxitZzitAyrbLrRadQmfsPu7E1-Vjxxesj29DCfFF8u330-_1Bdf3x_dX52XRlOYK4aY_C9TrBaNNLVtYCeSHDMAoOeGdNq3uPXmLp1wJxsG92Aobbmdd1J0bdwUlyt3j7qrZqSH3Xaqai92hdi2iid8EKDVZaAaxw4yVrGG2g7Rpra1bTrnATeWXS9Xl351k5L95ftwn8929uWRQkOUgLir1Z8SvH7YvOsRp-NHQYdbFyyAsokMFJTiejLf9BtXFLAj7mnhJScS44UWymTYs7JuocbUKLug6LWoCgMitoHRVHc9OKgXrrR9g9bfsUCATi8ClthY9Pvs_-jvQO3Dcqb</recordid><startdate>20241108</startdate><enddate>20241108</enddate><creator>Ma, Pan</creator><creator>Ma, Huan</creator><creator>Liu, Ruixiang</creator><creator>Wen, Haini</creator><creator>Li, Haisheng</creator><creator>Huang, Yifan</creator><creator>Li, Ying</creator><creator>Xiong, Lirong</creator><creator>Xie, Linli</creator><creator>Wang, Qian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20241108</creationdate><title>Prediction of vancomycin plasma concentration in elderly patients based on multi-algorithm mining combined with population pharmacokinetics</title><author>Ma, Pan ; Ma, Huan ; Liu, Ruixiang ; Wen, Haini ; Li, Haisheng ; Huang, Yifan ; Li, Ying ; Xiong, Lirong ; Xie, Linli ; Wang, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-7cc558f526578f6653d083f2e323d2cc9a4d598c69f32f897a73c1e6466b85d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/154</topic><topic>631/154/436</topic><topic>631/154/436/108</topic><topic>631/154/436/1729</topic><topic>631/154/436/2388</topic><topic>Accuracy</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Anti-Bacterial Agents - blood</topic><topic>Anti-Bacterial Agents - pharmacokinetics</topic><topic>Antibiotics</topic><topic>Elderly</topic><topic>Feature selection</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Pharmacokinetics</topic><topic>Population pharmacokinetics</topic><topic>Population studies</topic><topic>Precision medicine</topic><topic>Prediction models</topic><topic>Retrospective Studies</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Vancomycin</topic><topic>Vancomycin - blood</topic><topic>Vancomycin - pharmacokinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Pan</creatorcontrib><creatorcontrib>Ma, Huan</creatorcontrib><creatorcontrib>Liu, Ruixiang</creatorcontrib><creatorcontrib>Wen, Haini</creatorcontrib><creatorcontrib>Li, Haisheng</creatorcontrib><creatorcontrib>Huang, Yifan</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Xiong, Lirong</creatorcontrib><creatorcontrib>Xie, Linli</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Pan</au><au>Ma, Huan</au><au>Liu, Ruixiang</au><au>Wen, Haini</au><au>Li, Haisheng</au><au>Huang, Yifan</au><au>Li, Ying</au><au>Xiong, Lirong</au><au>Xie, Linli</au><au>Wang, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of vancomycin plasma concentration in elderly patients based on multi-algorithm mining combined with population pharmacokinetics</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-11-08</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>27165</spage><epage>15</epage><pages>27165-15</pages><artnum>27165</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The pharmacokinetics of vancomycin exhibit significant inter-individual variability, particularly among elderly patients. This study aims to develop a predictive model that integrates machine learning with population pharmacokinetics (popPK) to facilitate personalized medication management for this demographic. A retrospective analysis incorporating 33 features, including popPK parameters such as clearance and volume of distribution. A combination of multiple algorithms and Shapley Additive Explanations was utilized for feature selection to identify the most influential factors affecting drug concentrations. The performance of each algorithm with popPK parameters was superior to that without popPK parameters. Our final ensemble model, composed of support vector regression, light gradient boosting machine, and categorical boosting in a 6:3:1 ratio, included 16 optimized features. This model demonstrated superior predictive accuracy compared to models utilizing all features, with testing group metrics including an R 2 of 0.656, mean absolute error of 3.458, mean square error of 28.103, absolute accuracy within ± 5 mg/L of 81.82%, and relative accuracy within ± 30% of 76.62%. This study presents a rapid and cost-effective predictive model for estimating vancomycin plasma concentrations in elderly patients. The model offers a valuable tool for clinicians to accurately determine effective plasma concentration ranges and tailor individualized dosing regimens, thereby enhancing therapeutic outcomes and safety.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39511378</pmid><doi>10.1038/s41598-024-78558-1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2024-11, Vol.14 (1), p.27165-15, Article 27165
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e03f7f3f82924739b2076f61bbf834be
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/154
631/154/436
631/154/436/108
631/154/436/1729
631/154/436/2388
Accuracy
Aged
Aged, 80 and over
Algorithms
Anti-Bacterial Agents - blood
Anti-Bacterial Agents - pharmacokinetics
Antibiotics
Elderly
Feature selection
Female
Humanities and Social Sciences
Humans
Machine Learning
Male
Models, Biological
multidisciplinary
Pharmacokinetics
Population pharmacokinetics
Population studies
Precision medicine
Prediction models
Retrospective Studies
Science
Science (multidisciplinary)
Vancomycin
Vancomycin - blood
Vancomycin - pharmacokinetics
title Prediction of vancomycin plasma concentration in elderly patients based on multi-algorithm mining combined with population pharmacokinetics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20vancomycin%20plasma%20concentration%20in%20elderly%20patients%20based%20on%20multi-algorithm%20mining%20combined%20with%20population%20pharmacokinetics&rft.jtitle=Scientific%20reports&rft.au=Ma,%20Pan&rft.date=2024-11-08&rft.volume=14&rft.issue=1&rft.spage=27165&rft.epage=15&rft.pages=27165-15&rft.artnum=27165&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-78558-1&rft_dat=%3Cproquest_doaj_%3E3125884484%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-7cc558f526578f6653d083f2e323d2cc9a4d598c69f32f897a73c1e6466b85d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3125884484&rft_id=info:pmid/39511378&rfr_iscdi=true