Loading…

Bridging Single Neuron Dynamics to Global Brain States

Biological neural networks produce information backgrounds of multi-scale spontaneous activity that become more complex in brain states displaying higher capacities for cognition, for instance, attentive awake versus asleep or anesthetized states. Here, we review brain state-dependent mechanisms spa...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in systems neuroscience 2019-12, Vol.13, p.75-75
Main Authors: Goldman, Jennifer S, Tort-Colet, Núria, di Volo, Matteo, Susin, Eduarda, Bouté, Jules, Dali, Melissa, Carlu, Mallory, Nghiem, Trang-Anh, Górski, Tomasz, Destexhe, Alain
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c496t-985ce6a147ca70a8e1b6e70352a76df6b43c62ee01632d8a40cd53227f58d0a13
cites cdi_FETCH-LOGICAL-c496t-985ce6a147ca70a8e1b6e70352a76df6b43c62ee01632d8a40cd53227f58d0a13
container_end_page 75
container_issue
container_start_page 75
container_title Frontiers in systems neuroscience
container_volume 13
creator Goldman, Jennifer S
Tort-Colet, Núria
di Volo, Matteo
Susin, Eduarda
Bouté, Jules
Dali, Melissa
Carlu, Mallory
Nghiem, Trang-Anh
Górski, Tomasz
Destexhe, Alain
description Biological neural networks produce information backgrounds of multi-scale spontaneous activity that become more complex in brain states displaying higher capacities for cognition, for instance, attentive awake versus asleep or anesthetized states. Here, we review brain state-dependent mechanisms spanning ion channel currents (microscale) to the dynamics of brain-wide, distributed, transient functional assemblies (macroscale). Not unlike how microscopic interactions between molecules underlie structures formed in macroscopic states of matter, using statistical physics, the dynamics of microscopic neural phenomena can be linked to macroscopic brain dynamics through mesoscopic scales. Beyond spontaneous dynamics, it is observed that stimuli evoke collapses of complexity, most remarkable over high dimensional, asynchronous, irregular background dynamics during consciousness. In contrast, complexity may not be further collapsed beyond synchrony and regularity characteristic of unconscious spontaneous activity. We propose that increased dimensionality of spontaneous dynamics during conscious states supports responsiveness, enhancing neural networks' emergent capacity to robustly encode information over multiple scales.
doi_str_mv 10.3389/fnsys.2019.00075
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e08400625d1c4faa9a54686c75d63522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e08400625d1c4faa9a54686c75d63522</doaj_id><sourcerecordid>2330059703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-985ce6a147ca70a8e1b6e70352a76df6b43c62ee01632d8a40cd53227f58d0a13</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EoqX0zgntEQ4JY3v9dUHqF22lCA6lZ2tie1NXm3WxN5Xy3-NNStVysa3xvN_4-RHyicKcc22-dUPZljkDauYAoMQbckilZDNBuXr74nxAPpRyDyCZFOY9OeBUS6m5OiTyNEe_isOqualLH5qfYZPT0JxvB1xHV5oxNZd9WmLfnGaMQ3Mz4hjKR_Kuw76E46f9iNz-uPh9djVb_Lq8PjtZzFxr5DgzWrggkbbKoQLUgS5lUMAFQyV9J5ctd5KFAFRy5jW24LzgjKlOaA9I-RG53nN9wnv7kOMa89YmjHZXSHllMY_R9cEG0O3kUHjq2g7RoGillk4JL-tAVlnf96yHzXIdvAvDmLF_BX19M8Q7u0qPVpqKVqYCvu4Bd__Jrk4WdqoBE1CNtI_Tw788DcvpzyaU0a5jcaHvcQhpUyzjHECY-he1FfatLqdScuie2RTsFLPdxWynmO0u5ir5_NLKs-BfrvwvvReiIQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330059703</pqid></control><display><type>article</type><title>Bridging Single Neuron Dynamics to Global Brain States</title><source>PubMed Central</source><creator>Goldman, Jennifer S ; Tort-Colet, Núria ; di Volo, Matteo ; Susin, Eduarda ; Bouté, Jules ; Dali, Melissa ; Carlu, Mallory ; Nghiem, Trang-Anh ; Górski, Tomasz ; Destexhe, Alain</creator><creatorcontrib>Goldman, Jennifer S ; Tort-Colet, Núria ; di Volo, Matteo ; Susin, Eduarda ; Bouté, Jules ; Dali, Melissa ; Carlu, Mallory ; Nghiem, Trang-Anh ; Górski, Tomasz ; Destexhe, Alain</creatorcontrib><description>Biological neural networks produce information backgrounds of multi-scale spontaneous activity that become more complex in brain states displaying higher capacities for cognition, for instance, attentive awake versus asleep or anesthetized states. Here, we review brain state-dependent mechanisms spanning ion channel currents (microscale) to the dynamics of brain-wide, distributed, transient functional assemblies (macroscale). Not unlike how microscopic interactions between molecules underlie structures formed in macroscopic states of matter, using statistical physics, the dynamics of microscopic neural phenomena can be linked to macroscopic brain dynamics through mesoscopic scales. Beyond spontaneous dynamics, it is observed that stimuli evoke collapses of complexity, most remarkable over high dimensional, asynchronous, irregular background dynamics during consciousness. In contrast, complexity may not be further collapsed beyond synchrony and regularity characteristic of unconscious spontaneous activity. We propose that increased dimensionality of spontaneous dynamics during conscious states supports responsiveness, enhancing neural networks' emergent capacity to robustly encode information over multiple scales.</description><identifier>ISSN: 1662-5137</identifier><identifier>EISSN: 1662-5137</identifier><identifier>DOI: 10.3389/fnsys.2019.00075</identifier><identifier>PMID: 31866837</identifier><language>eng</language><publisher>Switzerland: Frontiers</publisher><subject>cerebral cortex ; computational neuroscience ; Life Sciences ; low-dimensional manifold ; mean-field models ; membrane biophysics ; neural network models ; Neurons and Cognition ; Neuroscience</subject><ispartof>Frontiers in systems neuroscience, 2019-12, Vol.13, p.75-75</ispartof><rights>Copyright © 2019 Goldman, Tort-Colet, di Volo, Susin, Bouté, Dali, Carlu, Nghiem, Górski and Destexhe.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2019 Goldman, Tort-Colet, di Volo, Susin, Bouté, Dali, Carlu, Nghiem, Górski and Destexhe. 2019 Goldman, Tort-Colet, di Volo, Susin, Bouté, Dali, Carlu, Nghiem, Górski and Destexhe</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-985ce6a147ca70a8e1b6e70352a76df6b43c62ee01632d8a40cd53227f58d0a13</citedby><cites>FETCH-LOGICAL-c496t-985ce6a147ca70a8e1b6e70352a76df6b43c62ee01632d8a40cd53227f58d0a13</cites><orcidid>0000-0002-7294-5455 ; 0000-0001-7405-0455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908479/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908479/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31866837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02506324$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldman, Jennifer S</creatorcontrib><creatorcontrib>Tort-Colet, Núria</creatorcontrib><creatorcontrib>di Volo, Matteo</creatorcontrib><creatorcontrib>Susin, Eduarda</creatorcontrib><creatorcontrib>Bouté, Jules</creatorcontrib><creatorcontrib>Dali, Melissa</creatorcontrib><creatorcontrib>Carlu, Mallory</creatorcontrib><creatorcontrib>Nghiem, Trang-Anh</creatorcontrib><creatorcontrib>Górski, Tomasz</creatorcontrib><creatorcontrib>Destexhe, Alain</creatorcontrib><title>Bridging Single Neuron Dynamics to Global Brain States</title><title>Frontiers in systems neuroscience</title><addtitle>Front Syst Neurosci</addtitle><description>Biological neural networks produce information backgrounds of multi-scale spontaneous activity that become more complex in brain states displaying higher capacities for cognition, for instance, attentive awake versus asleep or anesthetized states. Here, we review brain state-dependent mechanisms spanning ion channel currents (microscale) to the dynamics of brain-wide, distributed, transient functional assemblies (macroscale). Not unlike how microscopic interactions between molecules underlie structures formed in macroscopic states of matter, using statistical physics, the dynamics of microscopic neural phenomena can be linked to macroscopic brain dynamics through mesoscopic scales. Beyond spontaneous dynamics, it is observed that stimuli evoke collapses of complexity, most remarkable over high dimensional, asynchronous, irregular background dynamics during consciousness. In contrast, complexity may not be further collapsed beyond synchrony and regularity characteristic of unconscious spontaneous activity. We propose that increased dimensionality of spontaneous dynamics during conscious states supports responsiveness, enhancing neural networks' emergent capacity to robustly encode information over multiple scales.</description><subject>cerebral cortex</subject><subject>computational neuroscience</subject><subject>Life Sciences</subject><subject>low-dimensional manifold</subject><subject>mean-field models</subject><subject>membrane biophysics</subject><subject>neural network models</subject><subject>Neurons and Cognition</subject><subject>Neuroscience</subject><issn>1662-5137</issn><issn>1662-5137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdkc1vEzEQxS0EoqX0zgntEQ4JY3v9dUHqF22lCA6lZ2tie1NXm3WxN5Xy3-NNStVysa3xvN_4-RHyicKcc22-dUPZljkDauYAoMQbckilZDNBuXr74nxAPpRyDyCZFOY9OeBUS6m5OiTyNEe_isOqualLH5qfYZPT0JxvB1xHV5oxNZd9WmLfnGaMQ3Mz4hjKR_Kuw76E46f9iNz-uPh9djVb_Lq8PjtZzFxr5DgzWrggkbbKoQLUgS5lUMAFQyV9J5ctd5KFAFRy5jW24LzgjKlOaA9I-RG53nN9wnv7kOMa89YmjHZXSHllMY_R9cEG0O3kUHjq2g7RoGillk4JL-tAVlnf96yHzXIdvAvDmLF_BX19M8Q7u0qPVpqKVqYCvu4Bd__Jrk4WdqoBE1CNtI_Tw788DcvpzyaU0a5jcaHvcQhpUyzjHECY-he1FfatLqdScuie2RTsFLPdxWynmO0u5ir5_NLKs-BfrvwvvReiIQ</recordid><startdate>20191206</startdate><enddate>20191206</enddate><creator>Goldman, Jennifer S</creator><creator>Tort-Colet, Núria</creator><creator>di Volo, Matteo</creator><creator>Susin, Eduarda</creator><creator>Bouté, Jules</creator><creator>Dali, Melissa</creator><creator>Carlu, Mallory</creator><creator>Nghiem, Trang-Anh</creator><creator>Górski, Tomasz</creator><creator>Destexhe, Alain</creator><general>Frontiers</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7294-5455</orcidid><orcidid>https://orcid.org/0000-0001-7405-0455</orcidid></search><sort><creationdate>20191206</creationdate><title>Bridging Single Neuron Dynamics to Global Brain States</title><author>Goldman, Jennifer S ; Tort-Colet, Núria ; di Volo, Matteo ; Susin, Eduarda ; Bouté, Jules ; Dali, Melissa ; Carlu, Mallory ; Nghiem, Trang-Anh ; Górski, Tomasz ; Destexhe, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-985ce6a147ca70a8e1b6e70352a76df6b43c62ee01632d8a40cd53227f58d0a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>cerebral cortex</topic><topic>computational neuroscience</topic><topic>Life Sciences</topic><topic>low-dimensional manifold</topic><topic>mean-field models</topic><topic>membrane biophysics</topic><topic>neural network models</topic><topic>Neurons and Cognition</topic><topic>Neuroscience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldman, Jennifer S</creatorcontrib><creatorcontrib>Tort-Colet, Núria</creatorcontrib><creatorcontrib>di Volo, Matteo</creatorcontrib><creatorcontrib>Susin, Eduarda</creatorcontrib><creatorcontrib>Bouté, Jules</creatorcontrib><creatorcontrib>Dali, Melissa</creatorcontrib><creatorcontrib>Carlu, Mallory</creatorcontrib><creatorcontrib>Nghiem, Trang-Anh</creatorcontrib><creatorcontrib>Górski, Tomasz</creatorcontrib><creatorcontrib>Destexhe, Alain</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in systems neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldman, Jennifer S</au><au>Tort-Colet, Núria</au><au>di Volo, Matteo</au><au>Susin, Eduarda</au><au>Bouté, Jules</au><au>Dali, Melissa</au><au>Carlu, Mallory</au><au>Nghiem, Trang-Anh</au><au>Górski, Tomasz</au><au>Destexhe, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging Single Neuron Dynamics to Global Brain States</atitle><jtitle>Frontiers in systems neuroscience</jtitle><addtitle>Front Syst Neurosci</addtitle><date>2019-12-06</date><risdate>2019</risdate><volume>13</volume><spage>75</spage><epage>75</epage><pages>75-75</pages><issn>1662-5137</issn><eissn>1662-5137</eissn><abstract>Biological neural networks produce information backgrounds of multi-scale spontaneous activity that become more complex in brain states displaying higher capacities for cognition, for instance, attentive awake versus asleep or anesthetized states. Here, we review brain state-dependent mechanisms spanning ion channel currents (microscale) to the dynamics of brain-wide, distributed, transient functional assemblies (macroscale). Not unlike how microscopic interactions between molecules underlie structures formed in macroscopic states of matter, using statistical physics, the dynamics of microscopic neural phenomena can be linked to macroscopic brain dynamics through mesoscopic scales. Beyond spontaneous dynamics, it is observed that stimuli evoke collapses of complexity, most remarkable over high dimensional, asynchronous, irregular background dynamics during consciousness. In contrast, complexity may not be further collapsed beyond synchrony and regularity characteristic of unconscious spontaneous activity. We propose that increased dimensionality of spontaneous dynamics during conscious states supports responsiveness, enhancing neural networks' emergent capacity to robustly encode information over multiple scales.</abstract><cop>Switzerland</cop><pub>Frontiers</pub><pmid>31866837</pmid><doi>10.3389/fnsys.2019.00075</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7294-5455</orcidid><orcidid>https://orcid.org/0000-0001-7405-0455</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-5137
ispartof Frontiers in systems neuroscience, 2019-12, Vol.13, p.75-75
issn 1662-5137
1662-5137
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e08400625d1c4faa9a54686c75d63522
source PubMed Central
subjects cerebral cortex
computational neuroscience
Life Sciences
low-dimensional manifold
mean-field models
membrane biophysics
neural network models
Neurons and Cognition
Neuroscience
title Bridging Single Neuron Dynamics to Global Brain States
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20Single%20Neuron%20Dynamics%20to%20Global%20Brain%20States&rft.jtitle=Frontiers%20in%20systems%20neuroscience&rft.au=Goldman,%20Jennifer%20S&rft.date=2019-12-06&rft.volume=13&rft.spage=75&rft.epage=75&rft.pages=75-75&rft.issn=1662-5137&rft.eissn=1662-5137&rft_id=info:doi/10.3389/fnsys.2019.00075&rft_dat=%3Cproquest_doaj_%3E2330059703%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-985ce6a147ca70a8e1b6e70352a76df6b43c62ee01632d8a40cd53227f58d0a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2330059703&rft_id=info:pmid/31866837&rfr_iscdi=true