Loading…
Bridging Single Neuron Dynamics to Global Brain States
Biological neural networks produce information backgrounds of multi-scale spontaneous activity that become more complex in brain states displaying higher capacities for cognition, for instance, attentive awake versus asleep or anesthetized states. Here, we review brain state-dependent mechanisms spa...
Saved in:
Published in: | Frontiers in systems neuroscience 2019-12, Vol.13, p.75-75 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c496t-985ce6a147ca70a8e1b6e70352a76df6b43c62ee01632d8a40cd53227f58d0a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c496t-985ce6a147ca70a8e1b6e70352a76df6b43c62ee01632d8a40cd53227f58d0a13 |
container_end_page | 75 |
container_issue | |
container_start_page | 75 |
container_title | Frontiers in systems neuroscience |
container_volume | 13 |
creator | Goldman, Jennifer S Tort-Colet, Núria di Volo, Matteo Susin, Eduarda Bouté, Jules Dali, Melissa Carlu, Mallory Nghiem, Trang-Anh Górski, Tomasz Destexhe, Alain |
description | Biological neural networks produce information backgrounds of multi-scale spontaneous activity that become more complex in brain states displaying higher capacities for cognition, for instance, attentive awake versus asleep or anesthetized states. Here, we review brain state-dependent mechanisms spanning ion channel currents (microscale) to the dynamics of brain-wide, distributed, transient functional assemblies (macroscale). Not unlike how microscopic interactions between molecules underlie structures formed in macroscopic states of matter, using statistical physics, the dynamics of microscopic neural phenomena can be linked to macroscopic brain dynamics through mesoscopic scales. Beyond spontaneous dynamics, it is observed that stimuli evoke collapses of complexity, most remarkable over high dimensional, asynchronous, irregular background dynamics during consciousness. In contrast, complexity may not be further collapsed beyond synchrony and regularity characteristic of unconscious spontaneous activity. We propose that increased dimensionality of spontaneous dynamics during conscious states supports responsiveness, enhancing neural networks' emergent capacity to robustly encode information over multiple scales. |
doi_str_mv | 10.3389/fnsys.2019.00075 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e08400625d1c4faa9a54686c75d63522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e08400625d1c4faa9a54686c75d63522</doaj_id><sourcerecordid>2330059703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-985ce6a147ca70a8e1b6e70352a76df6b43c62ee01632d8a40cd53227f58d0a13</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EoqX0zgntEQ4JY3v9dUHqF22lCA6lZ2tie1NXm3WxN5Xy3-NNStVysa3xvN_4-RHyicKcc22-dUPZljkDauYAoMQbckilZDNBuXr74nxAPpRyDyCZFOY9OeBUS6m5OiTyNEe_isOqualLH5qfYZPT0JxvB1xHV5oxNZd9WmLfnGaMQ3Mz4hjKR_Kuw76E46f9iNz-uPh9djVb_Lq8PjtZzFxr5DgzWrggkbbKoQLUgS5lUMAFQyV9J5ctd5KFAFRy5jW24LzgjKlOaA9I-RG53nN9wnv7kOMa89YmjHZXSHllMY_R9cEG0O3kUHjq2g7RoGillk4JL-tAVlnf96yHzXIdvAvDmLF_BX19M8Q7u0qPVpqKVqYCvu4Bd__Jrk4WdqoBE1CNtI_Tw788DcvpzyaU0a5jcaHvcQhpUyzjHECY-he1FfatLqdScuie2RTsFLPdxWynmO0u5ir5_NLKs-BfrvwvvReiIQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330059703</pqid></control><display><type>article</type><title>Bridging Single Neuron Dynamics to Global Brain States</title><source>PubMed Central</source><creator>Goldman, Jennifer S ; Tort-Colet, Núria ; di Volo, Matteo ; Susin, Eduarda ; Bouté, Jules ; Dali, Melissa ; Carlu, Mallory ; Nghiem, Trang-Anh ; Górski, Tomasz ; Destexhe, Alain</creator><creatorcontrib>Goldman, Jennifer S ; Tort-Colet, Núria ; di Volo, Matteo ; Susin, Eduarda ; Bouté, Jules ; Dali, Melissa ; Carlu, Mallory ; Nghiem, Trang-Anh ; Górski, Tomasz ; Destexhe, Alain</creatorcontrib><description>Biological neural networks produce information backgrounds of multi-scale spontaneous activity that become more complex in brain states displaying higher capacities for cognition, for instance, attentive awake versus asleep or anesthetized states. Here, we review brain state-dependent mechanisms spanning ion channel currents (microscale) to the dynamics of brain-wide, distributed, transient functional assemblies (macroscale). Not unlike how microscopic interactions between molecules underlie structures formed in macroscopic states of matter, using statistical physics, the dynamics of microscopic neural phenomena can be linked to macroscopic brain dynamics through mesoscopic scales. Beyond spontaneous dynamics, it is observed that stimuli evoke collapses of complexity, most remarkable over high dimensional, asynchronous, irregular background dynamics during consciousness. In contrast, complexity may not be further collapsed beyond synchrony and regularity characteristic of unconscious spontaneous activity. We propose that increased dimensionality of spontaneous dynamics during conscious states supports responsiveness, enhancing neural networks' emergent capacity to robustly encode information over multiple scales.</description><identifier>ISSN: 1662-5137</identifier><identifier>EISSN: 1662-5137</identifier><identifier>DOI: 10.3389/fnsys.2019.00075</identifier><identifier>PMID: 31866837</identifier><language>eng</language><publisher>Switzerland: Frontiers</publisher><subject>cerebral cortex ; computational neuroscience ; Life Sciences ; low-dimensional manifold ; mean-field models ; membrane biophysics ; neural network models ; Neurons and Cognition ; Neuroscience</subject><ispartof>Frontiers in systems neuroscience, 2019-12, Vol.13, p.75-75</ispartof><rights>Copyright © 2019 Goldman, Tort-Colet, di Volo, Susin, Bouté, Dali, Carlu, Nghiem, Górski and Destexhe.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2019 Goldman, Tort-Colet, di Volo, Susin, Bouté, Dali, Carlu, Nghiem, Górski and Destexhe. 2019 Goldman, Tort-Colet, di Volo, Susin, Bouté, Dali, Carlu, Nghiem, Górski and Destexhe</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-985ce6a147ca70a8e1b6e70352a76df6b43c62ee01632d8a40cd53227f58d0a13</citedby><cites>FETCH-LOGICAL-c496t-985ce6a147ca70a8e1b6e70352a76df6b43c62ee01632d8a40cd53227f58d0a13</cites><orcidid>0000-0002-7294-5455 ; 0000-0001-7405-0455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908479/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908479/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31866837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02506324$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldman, Jennifer S</creatorcontrib><creatorcontrib>Tort-Colet, Núria</creatorcontrib><creatorcontrib>di Volo, Matteo</creatorcontrib><creatorcontrib>Susin, Eduarda</creatorcontrib><creatorcontrib>Bouté, Jules</creatorcontrib><creatorcontrib>Dali, Melissa</creatorcontrib><creatorcontrib>Carlu, Mallory</creatorcontrib><creatorcontrib>Nghiem, Trang-Anh</creatorcontrib><creatorcontrib>Górski, Tomasz</creatorcontrib><creatorcontrib>Destexhe, Alain</creatorcontrib><title>Bridging Single Neuron Dynamics to Global Brain States</title><title>Frontiers in systems neuroscience</title><addtitle>Front Syst Neurosci</addtitle><description>Biological neural networks produce information backgrounds of multi-scale spontaneous activity that become more complex in brain states displaying higher capacities for cognition, for instance, attentive awake versus asleep or anesthetized states. Here, we review brain state-dependent mechanisms spanning ion channel currents (microscale) to the dynamics of brain-wide, distributed, transient functional assemblies (macroscale). Not unlike how microscopic interactions between molecules underlie structures formed in macroscopic states of matter, using statistical physics, the dynamics of microscopic neural phenomena can be linked to macroscopic brain dynamics through mesoscopic scales. Beyond spontaneous dynamics, it is observed that stimuli evoke collapses of complexity, most remarkable over high dimensional, asynchronous, irregular background dynamics during consciousness. In contrast, complexity may not be further collapsed beyond synchrony and regularity characteristic of unconscious spontaneous activity. We propose that increased dimensionality of spontaneous dynamics during conscious states supports responsiveness, enhancing neural networks' emergent capacity to robustly encode information over multiple scales.</description><subject>cerebral cortex</subject><subject>computational neuroscience</subject><subject>Life Sciences</subject><subject>low-dimensional manifold</subject><subject>mean-field models</subject><subject>membrane biophysics</subject><subject>neural network models</subject><subject>Neurons and Cognition</subject><subject>Neuroscience</subject><issn>1662-5137</issn><issn>1662-5137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdkc1vEzEQxS0EoqX0zgntEQ4JY3v9dUHqF22lCA6lZ2tie1NXm3WxN5Xy3-NNStVysa3xvN_4-RHyicKcc22-dUPZljkDauYAoMQbckilZDNBuXr74nxAPpRyDyCZFOY9OeBUS6m5OiTyNEe_isOqualLH5qfYZPT0JxvB1xHV5oxNZd9WmLfnGaMQ3Mz4hjKR_Kuw76E46f9iNz-uPh9djVb_Lq8PjtZzFxr5DgzWrggkbbKoQLUgS5lUMAFQyV9J5ctd5KFAFRy5jW24LzgjKlOaA9I-RG53nN9wnv7kOMa89YmjHZXSHllMY_R9cEG0O3kUHjq2g7RoGillk4JL-tAVlnf96yHzXIdvAvDmLF_BX19M8Q7u0qPVpqKVqYCvu4Bd__Jrk4WdqoBE1CNtI_Tw788DcvpzyaU0a5jcaHvcQhpUyzjHECY-he1FfatLqdScuie2RTsFLPdxWynmO0u5ir5_NLKs-BfrvwvvReiIQ</recordid><startdate>20191206</startdate><enddate>20191206</enddate><creator>Goldman, Jennifer S</creator><creator>Tort-Colet, Núria</creator><creator>di Volo, Matteo</creator><creator>Susin, Eduarda</creator><creator>Bouté, Jules</creator><creator>Dali, Melissa</creator><creator>Carlu, Mallory</creator><creator>Nghiem, Trang-Anh</creator><creator>Górski, Tomasz</creator><creator>Destexhe, Alain</creator><general>Frontiers</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7294-5455</orcidid><orcidid>https://orcid.org/0000-0001-7405-0455</orcidid></search><sort><creationdate>20191206</creationdate><title>Bridging Single Neuron Dynamics to Global Brain States</title><author>Goldman, Jennifer S ; Tort-Colet, Núria ; di Volo, Matteo ; Susin, Eduarda ; Bouté, Jules ; Dali, Melissa ; Carlu, Mallory ; Nghiem, Trang-Anh ; Górski, Tomasz ; Destexhe, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-985ce6a147ca70a8e1b6e70352a76df6b43c62ee01632d8a40cd53227f58d0a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>cerebral cortex</topic><topic>computational neuroscience</topic><topic>Life Sciences</topic><topic>low-dimensional manifold</topic><topic>mean-field models</topic><topic>membrane biophysics</topic><topic>neural network models</topic><topic>Neurons and Cognition</topic><topic>Neuroscience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldman, Jennifer S</creatorcontrib><creatorcontrib>Tort-Colet, Núria</creatorcontrib><creatorcontrib>di Volo, Matteo</creatorcontrib><creatorcontrib>Susin, Eduarda</creatorcontrib><creatorcontrib>Bouté, Jules</creatorcontrib><creatorcontrib>Dali, Melissa</creatorcontrib><creatorcontrib>Carlu, Mallory</creatorcontrib><creatorcontrib>Nghiem, Trang-Anh</creatorcontrib><creatorcontrib>Górski, Tomasz</creatorcontrib><creatorcontrib>Destexhe, Alain</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in systems neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldman, Jennifer S</au><au>Tort-Colet, Núria</au><au>di Volo, Matteo</au><au>Susin, Eduarda</au><au>Bouté, Jules</au><au>Dali, Melissa</au><au>Carlu, Mallory</au><au>Nghiem, Trang-Anh</au><au>Górski, Tomasz</au><au>Destexhe, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging Single Neuron Dynamics to Global Brain States</atitle><jtitle>Frontiers in systems neuroscience</jtitle><addtitle>Front Syst Neurosci</addtitle><date>2019-12-06</date><risdate>2019</risdate><volume>13</volume><spage>75</spage><epage>75</epage><pages>75-75</pages><issn>1662-5137</issn><eissn>1662-5137</eissn><abstract>Biological neural networks produce information backgrounds of multi-scale spontaneous activity that become more complex in brain states displaying higher capacities for cognition, for instance, attentive awake versus asleep or anesthetized states. Here, we review brain state-dependent mechanisms spanning ion channel currents (microscale) to the dynamics of brain-wide, distributed, transient functional assemblies (macroscale). Not unlike how microscopic interactions between molecules underlie structures formed in macroscopic states of matter, using statistical physics, the dynamics of microscopic neural phenomena can be linked to macroscopic brain dynamics through mesoscopic scales. Beyond spontaneous dynamics, it is observed that stimuli evoke collapses of complexity, most remarkable over high dimensional, asynchronous, irregular background dynamics during consciousness. In contrast, complexity may not be further collapsed beyond synchrony and regularity characteristic of unconscious spontaneous activity. We propose that increased dimensionality of spontaneous dynamics during conscious states supports responsiveness, enhancing neural networks' emergent capacity to robustly encode information over multiple scales.</abstract><cop>Switzerland</cop><pub>Frontiers</pub><pmid>31866837</pmid><doi>10.3389/fnsys.2019.00075</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7294-5455</orcidid><orcidid>https://orcid.org/0000-0001-7405-0455</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-5137 |
ispartof | Frontiers in systems neuroscience, 2019-12, Vol.13, p.75-75 |
issn | 1662-5137 1662-5137 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e08400625d1c4faa9a54686c75d63522 |
source | PubMed Central |
subjects | cerebral cortex computational neuroscience Life Sciences low-dimensional manifold mean-field models membrane biophysics neural network models Neurons and Cognition Neuroscience |
title | Bridging Single Neuron Dynamics to Global Brain States |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20Single%20Neuron%20Dynamics%20to%20Global%20Brain%20States&rft.jtitle=Frontiers%20in%20systems%20neuroscience&rft.au=Goldman,%20Jennifer%20S&rft.date=2019-12-06&rft.volume=13&rft.spage=75&rft.epage=75&rft.pages=75-75&rft.issn=1662-5137&rft.eissn=1662-5137&rft_id=info:doi/10.3389/fnsys.2019.00075&rft_dat=%3Cproquest_doaj_%3E2330059703%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-985ce6a147ca70a8e1b6e70352a76df6b43c62ee01632d8a40cd53227f58d0a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2330059703&rft_id=info:pmid/31866837&rfr_iscdi=true |