Loading…

Operators for generic effective field theory at any dimension: on-shell amplitude basis construction

A bstract We describe a general procedure to construct the independent and complete operator bases for generic Lorentz invariant effective field theories, given any kind of gauge symmetry and field content, up to any mass dimension. By considering the operator as contact on-shell amplitude, the so-c...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2022-04, Vol.2022 (4), p.140-89, Article 140
Main Authors: Li, Hao-Lin, Ren, Zhe, Xiao, Ming-Lei, Yu, Jiang-Hao, Zheng, Yu-Hui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-acd78fb6b5eb493c2c9cfac44a86055136151a47c18b8988590d0353a01237f73
cites cdi_FETCH-LOGICAL-c417t-acd78fb6b5eb493c2c9cfac44a86055136151a47c18b8988590d0353a01237f73
container_end_page 89
container_issue 4
container_start_page 140
container_title The journal of high energy physics
container_volume 2022
creator Li, Hao-Lin
Ren, Zhe
Xiao, Ming-Lei
Yu, Jiang-Hao
Zheng, Yu-Hui
description A bstract We describe a general procedure to construct the independent and complete operator bases for generic Lorentz invariant effective field theories, given any kind of gauge symmetry and field content, up to any mass dimension. By considering the operator as contact on-shell amplitude, the so-called amplitude operator correspondence, we provide a unified construction of the Lorentz and gauge and flavor structures by Young Tableau tensor. Several bases are constructed to emphasize different aspects: independence (y-basis and m-basis), repeated fields with flavors (p-basis and f-basis), and conserved quantum numbers (j-basis). We also provide new algorithms for finding the m-basis by defining inner products for group factors and the p-basis by constructing the matrix representations of the Young symmetrizers from group generators. The on-shell amplitude basis gives us a systematic way to convert any operator into such basis, so that the conversions between any other operator bases can be easily done by linear algebra. All of these are implemented in a Mathematica package: ABC4EFT ( A mplitude B asis C onstruction for E ffective F ield T heories).
doi_str_mv 10.1007/JHEP04(2022)140
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e088763a549a4f958e54c5c2a7e59954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e088763a549a4f958e54c5c2a7e59954</doaj_id><sourcerecordid>2655930998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-acd78fb6b5eb493c2c9cfac44a86055136151a47c18b8988590d0353a01237f73</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhSMEEqVw5mqJCxxCx4kd29xQVdqiSu2hnK2JM956lbUX21tp_z0pqYALpxmN3vvmSa9p3nP4zAHU2ferizsQHzvouk9cwIvmhENnWi2UefnP_rp5U8oWgEtu4KSZbveUsaZcmE-ZbShSDo6R9-RqeCTmA80Tqw-U8pFhZRiPbAo7iiWk-IWl2JYHmmeGu_0c6mEiNmIJhbkUS82HBZLi2-aVx7nQu-d52vz4dnF_ftXe3F5en3-9aZ3gqrboJqX9OIySRmF61znjPDohUA8gJe-HJTQK5bgetdFaGpiglz0C73rlVX_aXK_cKeHW7nPYYT7ahMH-PqS8sZhrcDNZAq3V0KMUBoU3UpMUTroOFUljpFhYH1bWPqefByrVbtMhxyW-7QYpTQ_G6EV1tqpcTqVk8n--crBPtdi1FvtUi11qWRywOsqijBvKf7n_s_wCkfKOxg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655930998</pqid></control><display><type>article</type><title>Operators for generic effective field theory at any dimension: on-shell amplitude basis construction</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Li, Hao-Lin ; Ren, Zhe ; Xiao, Ming-Lei ; Yu, Jiang-Hao ; Zheng, Yu-Hui</creator><creatorcontrib>Li, Hao-Lin ; Ren, Zhe ; Xiao, Ming-Lei ; Yu, Jiang-Hao ; Zheng, Yu-Hui</creatorcontrib><description>A bstract We describe a general procedure to construct the independent and complete operator bases for generic Lorentz invariant effective field theories, given any kind of gauge symmetry and field content, up to any mass dimension. By considering the operator as contact on-shell amplitude, the so-called amplitude operator correspondence, we provide a unified construction of the Lorentz and gauge and flavor structures by Young Tableau tensor. Several bases are constructed to emphasize different aspects: independence (y-basis and m-basis), repeated fields with flavors (p-basis and f-basis), and conserved quantum numbers (j-basis). We also provide new algorithms for finding the m-basis by defining inner products for group factors and the p-basis by constructing the matrix representations of the Young symmetrizers from group generators. The on-shell amplitude basis gives us a systematic way to convert any operator into such basis, so that the conversions between any other operator bases can be easily done by linear algebra. All of these are implemented in a Mathematica package: ABC4EFT ( A mplitude B asis C onstruction for E ffective F ield T heories).</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP04(2022)140</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Amplitudes ; Classical and Quantum Gravitation ; Effective Field Theories ; Elementary Particles ; Field theory ; Flavor (particle physics) ; Group theory ; High energy physics ; Linear algebra ; Mathematical analysis ; Matrix representation ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum numbers ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Scattering Amplitudes ; SMEFT ; String Theory ; Tensors</subject><ispartof>The journal of high energy physics, 2022-04, Vol.2022 (4), p.140-89, Article 140</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-acd78fb6b5eb493c2c9cfac44a86055136151a47c18b8988590d0353a01237f73</citedby><cites>FETCH-LOGICAL-c417t-acd78fb6b5eb493c2c9cfac44a86055136151a47c18b8988590d0353a01237f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2655930998/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2655930998?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Li, Hao-Lin</creatorcontrib><creatorcontrib>Ren, Zhe</creatorcontrib><creatorcontrib>Xiao, Ming-Lei</creatorcontrib><creatorcontrib>Yu, Jiang-Hao</creatorcontrib><creatorcontrib>Zheng, Yu-Hui</creatorcontrib><title>Operators for generic effective field theory at any dimension: on-shell amplitude basis construction</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We describe a general procedure to construct the independent and complete operator bases for generic Lorentz invariant effective field theories, given any kind of gauge symmetry and field content, up to any mass dimension. By considering the operator as contact on-shell amplitude, the so-called amplitude operator correspondence, we provide a unified construction of the Lorentz and gauge and flavor structures by Young Tableau tensor. Several bases are constructed to emphasize different aspects: independence (y-basis and m-basis), repeated fields with flavors (p-basis and f-basis), and conserved quantum numbers (j-basis). We also provide new algorithms for finding the m-basis by defining inner products for group factors and the p-basis by constructing the matrix representations of the Young symmetrizers from group generators. The on-shell amplitude basis gives us a systematic way to convert any operator into such basis, so that the conversions between any other operator bases can be easily done by linear algebra. All of these are implemented in a Mathematica package: ABC4EFT ( A mplitude B asis C onstruction for E ffective F ield T heories).</description><subject>Algorithms</subject><subject>Amplitudes</subject><subject>Classical and Quantum Gravitation</subject><subject>Effective Field Theories</subject><subject>Elementary Particles</subject><subject>Field theory</subject><subject>Flavor (particle physics)</subject><subject>Group theory</subject><subject>High energy physics</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Matrix representation</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum numbers</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Scattering Amplitudes</subject><subject>SMEFT</subject><subject>String Theory</subject><subject>Tensors</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kUFv1DAQhSMEEqVw5mqJCxxCx4kd29xQVdqiSu2hnK2JM956lbUX21tp_z0pqYALpxmN3vvmSa9p3nP4zAHU2ferizsQHzvouk9cwIvmhENnWi2UefnP_rp5U8oWgEtu4KSZbveUsaZcmE-ZbShSDo6R9-RqeCTmA80Tqw-U8pFhZRiPbAo7iiWk-IWl2JYHmmeGu_0c6mEiNmIJhbkUS82HBZLi2-aVx7nQu-d52vz4dnF_ftXe3F5en3-9aZ3gqrboJqX9OIySRmF61znjPDohUA8gJe-HJTQK5bgetdFaGpiglz0C73rlVX_aXK_cKeHW7nPYYT7ahMH-PqS8sZhrcDNZAq3V0KMUBoU3UpMUTroOFUljpFhYH1bWPqefByrVbtMhxyW-7QYpTQ_G6EV1tqpcTqVk8n--crBPtdi1FvtUi11qWRywOsqijBvKf7n_s_wCkfKOxg</recordid><startdate>20220426</startdate><enddate>20220426</enddate><creator>Li, Hao-Lin</creator><creator>Ren, Zhe</creator><creator>Xiao, Ming-Lei</creator><creator>Yu, Jiang-Hao</creator><creator>Zheng, Yu-Hui</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20220426</creationdate><title>Operators for generic effective field theory at any dimension: on-shell amplitude basis construction</title><author>Li, Hao-Lin ; Ren, Zhe ; Xiao, Ming-Lei ; Yu, Jiang-Hao ; Zheng, Yu-Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-acd78fb6b5eb493c2c9cfac44a86055136151a47c18b8988590d0353a01237f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Amplitudes</topic><topic>Classical and Quantum Gravitation</topic><topic>Effective Field Theories</topic><topic>Elementary Particles</topic><topic>Field theory</topic><topic>Flavor (particle physics)</topic><topic>Group theory</topic><topic>High energy physics</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Matrix representation</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum numbers</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Scattering Amplitudes</topic><topic>SMEFT</topic><topic>String Theory</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hao-Lin</creatorcontrib><creatorcontrib>Ren, Zhe</creatorcontrib><creatorcontrib>Xiao, Ming-Lei</creatorcontrib><creatorcontrib>Yu, Jiang-Hao</creatorcontrib><creatorcontrib>Zheng, Yu-Hui</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hao-Lin</au><au>Ren, Zhe</au><au>Xiao, Ming-Lei</au><au>Yu, Jiang-Hao</au><au>Zheng, Yu-Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operators for generic effective field theory at any dimension: on-shell amplitude basis construction</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2022-04-26</date><risdate>2022</risdate><volume>2022</volume><issue>4</issue><spage>140</spage><epage>89</epage><pages>140-89</pages><artnum>140</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We describe a general procedure to construct the independent and complete operator bases for generic Lorentz invariant effective field theories, given any kind of gauge symmetry and field content, up to any mass dimension. By considering the operator as contact on-shell amplitude, the so-called amplitude operator correspondence, we provide a unified construction of the Lorentz and gauge and flavor structures by Young Tableau tensor. Several bases are constructed to emphasize different aspects: independence (y-basis and m-basis), repeated fields with flavors (p-basis and f-basis), and conserved quantum numbers (j-basis). We also provide new algorithms for finding the m-basis by defining inner products for group factors and the p-basis by constructing the matrix representations of the Young symmetrizers from group generators. The on-shell amplitude basis gives us a systematic way to convert any operator into such basis, so that the conversions between any other operator bases can be easily done by linear algebra. All of these are implemented in a Mathematica package: ABC4EFT ( A mplitude B asis C onstruction for E ffective F ield T heories).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP04(2022)140</doi><tpages>89</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2022-04, Vol.2022 (4), p.140-89, Article 140
issn 1029-8479
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e088763a549a4f958e54c5c2a7e59954
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Algorithms
Amplitudes
Classical and Quantum Gravitation
Effective Field Theories
Elementary Particles
Field theory
Flavor (particle physics)
Group theory
High energy physics
Linear algebra
Mathematical analysis
Matrix representation
Operators (mathematics)
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum numbers
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Scattering Amplitudes
SMEFT
String Theory
Tensors
title Operators for generic effective field theory at any dimension: on-shell amplitude basis construction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operators%20for%20generic%20effective%20field%20theory%20at%20any%20dimension:%20on-shell%20amplitude%20basis%20construction&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Li,%20Hao-Lin&rft.date=2022-04-26&rft.volume=2022&rft.issue=4&rft.spage=140&rft.epage=89&rft.pages=140-89&rft.artnum=140&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP04(2022)140&rft_dat=%3Cproquest_doaj_%3E2655930998%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-acd78fb6b5eb493c2c9cfac44a86055136151a47c18b8988590d0353a01237f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655930998&rft_id=info:pmid/&rfr_iscdi=true