Loading…

Genomic variations in patients with myelodysplastic syndrome and karyotypes without numerical or structural changes

Myelodysplastic syndrome (MDS) is an onco-hematologic disease with distinct levels of peripheral blood cytopenias, dysplasias in cell differentiation and various forms of chromosomal and cytogenomic alterations. In this study, the Chromosomal Microarray Analysis (CMA) was performed in patients with...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-02, Vol.11 (1), p.2783-2783, Article 2783
Main Authors: Ribeiro, Cristiano Luiz, Pinto, Irene P., Pereira, Samara S. S., Minasi, Lysa B., de S. M. Kluthcouski, Fernanda, de M. Arantes, Adriano, da Cruz, Aparecido D., de Almeida, Marcio A. A., Howard, Tom E., da Silva, Cláudio C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Myelodysplastic syndrome (MDS) is an onco-hematologic disease with distinct levels of peripheral blood cytopenias, dysplasias in cell differentiation and various forms of chromosomal and cytogenomic alterations. In this study, the Chromosomal Microarray Analysis (CMA) was performed in patients with primary MDS without numerical and/or structural chromosomal alterations in karyotypes. A total of 17 patients was evaluated by GTG banding and eight patients showed no numerical and/or structural alterations. Then, the CMA was carried out and identified gains and losses CNVs and long continuous stretches of homozygosity (LCSHs). They were mapped on chromosomes 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, X, and Y. Ninety-one genes that have already been implicated in molecular pathways important for cell viability were selected and in-silico expression analyses demonstrated 28 genes differentially expressed in mesenchymal stromal cells of patients. Alterations in these genes may be related to the inactivation of suppressor genes or the activation of oncogenes contributing to the evolution and malignization of MDS. CMA provided additional information in patients without visible changes in the karyotype and our findings could contribute with additional information to improve the prognostic and personalized stratification for patients.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-81467-2