Loading…
Near-Infrared Spectral Characteristic Extraction and Qualitative Analysis Method for Complex Multi-Component Mixtures Based on TRPCA-SVM
Quality identification of multi-component mixtures is essential for production process control. Artificial sensory evaluation is a conventional quality evaluation method of multi-component mixture, which is easily affected by human subjective factors, and its results are inaccurate and unstable. Thi...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-02, Vol.22 (4), p.1654 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quality identification of multi-component mixtures is essential for production process control. Artificial sensory evaluation is a conventional quality evaluation method of multi-component mixture, which is easily affected by human subjective factors, and its results are inaccurate and unstable. This study developed a near-infrared (NIR) spectral characteristic extraction method based on a three-dimensional analysis space and establishes a high-accuracy qualitative identification model. First, the Norris derivative filtering algorithm was used in the pre-processing of the NIR spectrum to obtain a smooth main absorption peak. Then, the third-order tensor robust principal component analysis (TRPCA) algorithm was used for characteristic extraction, which effectively reduced the dimensionality of the raw NIR spectral data. Finally, on this basis, a qualitative identification model based on support vector machines (SVM) was constructed, and the classification accuracy reached 98.94%. Therefore, it is possible to develop a non-destructive, rapid qualitative detection system based on NIR spectroscopy to mine the subtle differences between classes and to use low-dimensional characteristic wavebands to detect the quality of complex multi-component mixtures. This method can be a key component of automatic quality control in the production of multi-component products. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22041654 |