Loading…
The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions
The concept of the out-of-time-ordered correlation (OTOC) function is treated as a very strong theoretical probe of quantum randomness, using which one can study both chaotic and non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a general class of OTOC,...
Saved in:
Published in: | Symmetry (Basel) 2020-12, Vol.13 (1), p.44 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-9b55b1122e0d2947233c0cbc80abd4f934a4bf6dbcf2b47f5d3c4f4dea08d0843 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-9b55b1122e0d2947233c0cbc80abd4f934a4bf6dbcf2b47f5d3c4f4dea08d0843 |
container_end_page | |
container_issue | 1 |
container_start_page | 44 |
container_title | Symmetry (Basel) |
container_volume | 13 |
creator | Bhagat, Kaushik Y. Bose, Baibhab Choudhury, Sayantan Chowdhury, Satyaki Das, Rathindra N. Dastider, Saptarshhi G. Gupta, Nitin Maji, Archana Pasquino, Gabriel D. Paul, Swaraj |
description | The concept of the out-of-time-ordered correlation (OTOC) function is treated as a very strong theoretical probe of quantum randomness, using which one can study both chaotic and non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a general class of OTOC, which can perfectly capture quantum randomness phenomena in a better way. Further, we demonstrate an equivalent formalism of computation using a general time-independent Hamiltonian having well-defined eigenstate representation for integrable Supersymmetric quantum systems. We found that one needs to consider two new correlators apart from the usual one to have a complete quantum description. To visualize the impact of the given formalism, we consider the two well-known models, viz. Harmonic Oscillator and one-dimensional potential well within the framework of Supersymmetry. For the Harmonic Oscillator case, we obtain similar periodic time dependence but dissimilar parameter dependences compared to the results obtained from both microcanonical and canonical ensembles in quantum mechanics without Supersymmetry. On the other hand, for the One-Dimensional PotentialWell problem, we found significantly different time scales and the other parameter dependence compared to the results obtained from non-Supersymmetric quantum mechanics. Finally, to establish the consistency of the prescribed formalism in the classical limit, we demonstrate the phase space averaged version of the classical version of OTOCs from a model-independent Hamiltonian, along with the previously mentioned well-cited models. |
doi_str_mv | 10.3390/sym13010044 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e0bd4e539b6641d4b0125d5b8f87ff01</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e0bd4e539b6641d4b0125d5b8f87ff01</doaj_id><sourcerecordid>oai_doaj_org_article_e0bd4e539b6641d4b0125d5b8f87ff01</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-9b55b1122e0d2947233c0cbc80abd4f934a4bf6dbcf2b47f5d3c4f4dea08d0843</originalsourceid><addsrcrecordid>eNpNkctOwkAUhhujiQRZ-QKzN9UznSm0S0MASTBEwHUzlzNQ0guZmS5w5SuY-IQ-iYUaw9mcW75v8wfBPYVHxlJ4cseSMqAAnF8FvQhGLEzSlF9fzLfBwLk9tBVDzIfQC742OyQzrNCKIv9ATZab5ZgYW5dk3RzQttISvc0VeWtE5ZuSvKLaiSpX7ufze-0bfSS1IStR6RaZFo3yjfB5XblOMsm3WDkvPJIVHiw6rPz5f6LGtbVYdOu0qdSZuwtujCgcDv56P3ifTjbjl3CxnM3Hz4tQcYh8mMo4lpRGEYKOUj6KGFOgpEpASM1Nyrjg0gy1VCaSfGRizRQ3XKOAREPCWT-Yd15di312sHkp7DGrRZ6dD7XdZsL6XBWYIbRKjFkqh0NONZdAo1jHMjHJyBigreuhcylbO2fR_PsoZKdwsotw2C_QbYbo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions</title><source>Publicly Available Content Database</source><creator>Bhagat, Kaushik Y. ; Bose, Baibhab ; Choudhury, Sayantan ; Chowdhury, Satyaki ; Das, Rathindra N. ; Dastider, Saptarshhi G. ; Gupta, Nitin ; Maji, Archana ; Pasquino, Gabriel D. ; Paul, Swaraj</creator><creatorcontrib>Bhagat, Kaushik Y. ; Bose, Baibhab ; Choudhury, Sayantan ; Chowdhury, Satyaki ; Das, Rathindra N. ; Dastider, Saptarshhi G. ; Gupta, Nitin ; Maji, Archana ; Pasquino, Gabriel D. ; Paul, Swaraj</creatorcontrib><description>The concept of the out-of-time-ordered correlation (OTOC) function is treated as a very strong theoretical probe of quantum randomness, using which one can study both chaotic and non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a general class of OTOC, which can perfectly capture quantum randomness phenomena in a better way. Further, we demonstrate an equivalent formalism of computation using a general time-independent Hamiltonian having well-defined eigenstate representation for integrable Supersymmetric quantum systems. We found that one needs to consider two new correlators apart from the usual one to have a complete quantum description. To visualize the impact of the given formalism, we consider the two well-known models, viz. Harmonic Oscillator and one-dimensional potential well within the framework of Supersymmetry. For the Harmonic Oscillator case, we obtain similar periodic time dependence but dissimilar parameter dependences compared to the results obtained from both microcanonical and canonical ensembles in quantum mechanics without Supersymmetry. On the other hand, for the One-Dimensional PotentialWell problem, we found significantly different time scales and the other parameter dependence compared to the results obtained from non-Supersymmetric quantum mechanics. Finally, to establish the consistency of the prescribed formalism in the classical limit, we demonstrate the phase space averaged version of the classical version of OTOCs from a model-independent Hamiltonian, along with the previously mentioned well-cited models.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym13010044</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>OTOC ; out-of-equilibrium quantum statistical mechanics ; supersymmetry</subject><ispartof>Symmetry (Basel), 2020-12, Vol.13 (1), p.44</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-9b55b1122e0d2947233c0cbc80abd4f934a4bf6dbcf2b47f5d3c4f4dea08d0843</citedby><cites>FETCH-LOGICAL-c402t-9b55b1122e0d2947233c0cbc80abd4f934a4bf6dbcf2b47f5d3c4f4dea08d0843</cites><orcidid>0000-0002-0459-3873 ; 0000-0001-5855-2201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Bhagat, Kaushik Y.</creatorcontrib><creatorcontrib>Bose, Baibhab</creatorcontrib><creatorcontrib>Choudhury, Sayantan</creatorcontrib><creatorcontrib>Chowdhury, Satyaki</creatorcontrib><creatorcontrib>Das, Rathindra N.</creatorcontrib><creatorcontrib>Dastider, Saptarshhi G.</creatorcontrib><creatorcontrib>Gupta, Nitin</creatorcontrib><creatorcontrib>Maji, Archana</creatorcontrib><creatorcontrib>Pasquino, Gabriel D.</creatorcontrib><creatorcontrib>Paul, Swaraj</creatorcontrib><title>The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions</title><title>Symmetry (Basel)</title><description>The concept of the out-of-time-ordered correlation (OTOC) function is treated as a very strong theoretical probe of quantum randomness, using which one can study both chaotic and non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a general class of OTOC, which can perfectly capture quantum randomness phenomena in a better way. Further, we demonstrate an equivalent formalism of computation using a general time-independent Hamiltonian having well-defined eigenstate representation for integrable Supersymmetric quantum systems. We found that one needs to consider two new correlators apart from the usual one to have a complete quantum description. To visualize the impact of the given formalism, we consider the two well-known models, viz. Harmonic Oscillator and one-dimensional potential well within the framework of Supersymmetry. For the Harmonic Oscillator case, we obtain similar periodic time dependence but dissimilar parameter dependences compared to the results obtained from both microcanonical and canonical ensembles in quantum mechanics without Supersymmetry. On the other hand, for the One-Dimensional PotentialWell problem, we found significantly different time scales and the other parameter dependence compared to the results obtained from non-Supersymmetric quantum mechanics. Finally, to establish the consistency of the prescribed formalism in the classical limit, we demonstrate the phase space averaged version of the classical version of OTOCs from a model-independent Hamiltonian, along with the previously mentioned well-cited models.</description><subject>OTOC</subject><subject>out-of-equilibrium quantum statistical mechanics</subject><subject>supersymmetry</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkctOwkAUhhujiQRZ-QKzN9UznSm0S0MASTBEwHUzlzNQ0guZmS5w5SuY-IQ-iYUaw9mcW75v8wfBPYVHxlJ4cseSMqAAnF8FvQhGLEzSlF9fzLfBwLk9tBVDzIfQC742OyQzrNCKIv9ATZab5ZgYW5dk3RzQttISvc0VeWtE5ZuSvKLaiSpX7ufze-0bfSS1IStR6RaZFo3yjfB5XblOMsm3WDkvPJIVHiw6rPz5f6LGtbVYdOu0qdSZuwtujCgcDv56P3ifTjbjl3CxnM3Hz4tQcYh8mMo4lpRGEYKOUj6KGFOgpEpASM1Nyrjg0gy1VCaSfGRizRQ3XKOAREPCWT-Yd15di312sHkp7DGrRZ6dD7XdZsL6XBWYIbRKjFkqh0NONZdAo1jHMjHJyBigreuhcylbO2fR_PsoZKdwsotw2C_QbYbo</recordid><startdate>20201230</startdate><enddate>20201230</enddate><creator>Bhagat, Kaushik Y.</creator><creator>Bose, Baibhab</creator><creator>Choudhury, Sayantan</creator><creator>Chowdhury, Satyaki</creator><creator>Das, Rathindra N.</creator><creator>Dastider, Saptarshhi G.</creator><creator>Gupta, Nitin</creator><creator>Maji, Archana</creator><creator>Pasquino, Gabriel D.</creator><creator>Paul, Swaraj</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0459-3873</orcidid><orcidid>https://orcid.org/0000-0001-5855-2201</orcidid></search><sort><creationdate>20201230</creationdate><title>The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions</title><author>Bhagat, Kaushik Y. ; Bose, Baibhab ; Choudhury, Sayantan ; Chowdhury, Satyaki ; Das, Rathindra N. ; Dastider, Saptarshhi G. ; Gupta, Nitin ; Maji, Archana ; Pasquino, Gabriel D. ; Paul, Swaraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-9b55b1122e0d2947233c0cbc80abd4f934a4bf6dbcf2b47f5d3c4f4dea08d0843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>OTOC</topic><topic>out-of-equilibrium quantum statistical mechanics</topic><topic>supersymmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhagat, Kaushik Y.</creatorcontrib><creatorcontrib>Bose, Baibhab</creatorcontrib><creatorcontrib>Choudhury, Sayantan</creatorcontrib><creatorcontrib>Chowdhury, Satyaki</creatorcontrib><creatorcontrib>Das, Rathindra N.</creatorcontrib><creatorcontrib>Dastider, Saptarshhi G.</creatorcontrib><creatorcontrib>Gupta, Nitin</creatorcontrib><creatorcontrib>Maji, Archana</creatorcontrib><creatorcontrib>Pasquino, Gabriel D.</creatorcontrib><creatorcontrib>Paul, Swaraj</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhagat, Kaushik Y.</au><au>Bose, Baibhab</au><au>Choudhury, Sayantan</au><au>Chowdhury, Satyaki</au><au>Das, Rathindra N.</au><au>Dastider, Saptarshhi G.</au><au>Gupta, Nitin</au><au>Maji, Archana</au><au>Pasquino, Gabriel D.</au><au>Paul, Swaraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions</atitle><jtitle>Symmetry (Basel)</jtitle><date>2020-12-30</date><risdate>2020</risdate><volume>13</volume><issue>1</issue><spage>44</spage><pages>44-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>The concept of the out-of-time-ordered correlation (OTOC) function is treated as a very strong theoretical probe of quantum randomness, using which one can study both chaotic and non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a general class of OTOC, which can perfectly capture quantum randomness phenomena in a better way. Further, we demonstrate an equivalent formalism of computation using a general time-independent Hamiltonian having well-defined eigenstate representation for integrable Supersymmetric quantum systems. We found that one needs to consider two new correlators apart from the usual one to have a complete quantum description. To visualize the impact of the given formalism, we consider the two well-known models, viz. Harmonic Oscillator and one-dimensional potential well within the framework of Supersymmetry. For the Harmonic Oscillator case, we obtain similar periodic time dependence but dissimilar parameter dependences compared to the results obtained from both microcanonical and canonical ensembles in quantum mechanics without Supersymmetry. On the other hand, for the One-Dimensional PotentialWell problem, we found significantly different time scales and the other parameter dependence compared to the results obtained from non-Supersymmetric quantum mechanics. Finally, to establish the consistency of the prescribed formalism in the classical limit, we demonstrate the phase space averaged version of the classical version of OTOCs from a model-independent Hamiltonian, along with the previously mentioned well-cited models.</abstract><pub>MDPI AG</pub><doi>10.3390/sym13010044</doi><orcidid>https://orcid.org/0000-0002-0459-3873</orcidid><orcidid>https://orcid.org/0000-0001-5855-2201</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2020-12, Vol.13 (1), p.44 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e0bd4e539b6641d4b0125d5b8f87ff01 |
source | Publicly Available Content Database |
subjects | OTOC out-of-equilibrium quantum statistical mechanics supersymmetry |
title | The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Generalized%20OTOC%20from%20Supersymmetric%20Quantum%20Mechanics%E2%80%94Study%20of%20Random%20Fluctuations%20from%20Eigenstate%20Representation%20of%20Correlation%20Functions&rft.jtitle=Symmetry%20(Basel)&rft.au=Bhagat,%20Kaushik%20Y.&rft.date=2020-12-30&rft.volume=13&rft.issue=1&rft.spage=44&rft.pages=44-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym13010044&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_e0bd4e539b6641d4b0125d5b8f87ff01%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-9b55b1122e0d2947233c0cbc80abd4f934a4bf6dbcf2b47f5d3c4f4dea08d0843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |