Loading…

The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions

The concept of the out-of-time-ordered correlation (OTOC) function is treated as a very strong theoretical probe of quantum randomness, using which one can study both chaotic and non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a general class of OTOC,...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2020-12, Vol.13 (1), p.44
Main Authors: Bhagat, Kaushik Y., Bose, Baibhab, Choudhury, Sayantan, Chowdhury, Satyaki, Das, Rathindra N., Dastider, Saptarshhi G., Gupta, Nitin, Maji, Archana, Pasquino, Gabriel D., Paul, Swaraj
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-9b55b1122e0d2947233c0cbc80abd4f934a4bf6dbcf2b47f5d3c4f4dea08d0843
cites cdi_FETCH-LOGICAL-c402t-9b55b1122e0d2947233c0cbc80abd4f934a4bf6dbcf2b47f5d3c4f4dea08d0843
container_end_page
container_issue 1
container_start_page 44
container_title Symmetry (Basel)
container_volume 13
creator Bhagat, Kaushik Y.
Bose, Baibhab
Choudhury, Sayantan
Chowdhury, Satyaki
Das, Rathindra N.
Dastider, Saptarshhi G.
Gupta, Nitin
Maji, Archana
Pasquino, Gabriel D.
Paul, Swaraj
description The concept of the out-of-time-ordered correlation (OTOC) function is treated as a very strong theoretical probe of quantum randomness, using which one can study both chaotic and non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a general class of OTOC, which can perfectly capture quantum randomness phenomena in a better way. Further, we demonstrate an equivalent formalism of computation using a general time-independent Hamiltonian having well-defined eigenstate representation for integrable Supersymmetric quantum systems. We found that one needs to consider two new correlators apart from the usual one to have a complete quantum description. To visualize the impact of the given formalism, we consider the two well-known models, viz. Harmonic Oscillator and one-dimensional potential well within the framework of Supersymmetry. For the Harmonic Oscillator case, we obtain similar periodic time dependence but dissimilar parameter dependences compared to the results obtained from both microcanonical and canonical ensembles in quantum mechanics without Supersymmetry. On the other hand, for the One-Dimensional PotentialWell problem, we found significantly different time scales and the other parameter dependence compared to the results obtained from non-Supersymmetric quantum mechanics. Finally, to establish the consistency of the prescribed formalism in the classical limit, we demonstrate the phase space averaged version of the classical version of OTOCs from a model-independent Hamiltonian, along with the previously mentioned well-cited models.
doi_str_mv 10.3390/sym13010044
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e0bd4e539b6641d4b0125d5b8f87ff01</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e0bd4e539b6641d4b0125d5b8f87ff01</doaj_id><sourcerecordid>oai_doaj_org_article_e0bd4e539b6641d4b0125d5b8f87ff01</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-9b55b1122e0d2947233c0cbc80abd4f934a4bf6dbcf2b47f5d3c4f4dea08d0843</originalsourceid><addsrcrecordid>eNpNkctOwkAUhhujiQRZ-QKzN9UznSm0S0MASTBEwHUzlzNQ0guZmS5w5SuY-IQ-iYUaw9mcW75v8wfBPYVHxlJ4cseSMqAAnF8FvQhGLEzSlF9fzLfBwLk9tBVDzIfQC742OyQzrNCKIv9ATZab5ZgYW5dk3RzQttISvc0VeWtE5ZuSvKLaiSpX7ufze-0bfSS1IStR6RaZFo3yjfB5XblOMsm3WDkvPJIVHiw6rPz5f6LGtbVYdOu0qdSZuwtujCgcDv56P3ifTjbjl3CxnM3Hz4tQcYh8mMo4lpRGEYKOUj6KGFOgpEpASM1Nyrjg0gy1VCaSfGRizRQ3XKOAREPCWT-Yd15di312sHkp7DGrRZ6dD7XdZsL6XBWYIbRKjFkqh0NONZdAo1jHMjHJyBigreuhcylbO2fR_PsoZKdwsotw2C_QbYbo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions</title><source>Publicly Available Content Database</source><creator>Bhagat, Kaushik Y. ; Bose, Baibhab ; Choudhury, Sayantan ; Chowdhury, Satyaki ; Das, Rathindra N. ; Dastider, Saptarshhi G. ; Gupta, Nitin ; Maji, Archana ; Pasquino, Gabriel D. ; Paul, Swaraj</creator><creatorcontrib>Bhagat, Kaushik Y. ; Bose, Baibhab ; Choudhury, Sayantan ; Chowdhury, Satyaki ; Das, Rathindra N. ; Dastider, Saptarshhi G. ; Gupta, Nitin ; Maji, Archana ; Pasquino, Gabriel D. ; Paul, Swaraj</creatorcontrib><description>The concept of the out-of-time-ordered correlation (OTOC) function is treated as a very strong theoretical probe of quantum randomness, using which one can study both chaotic and non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a general class of OTOC, which can perfectly capture quantum randomness phenomena in a better way. Further, we demonstrate an equivalent formalism of computation using a general time-independent Hamiltonian having well-defined eigenstate representation for integrable Supersymmetric quantum systems. We found that one needs to consider two new correlators apart from the usual one to have a complete quantum description. To visualize the impact of the given formalism, we consider the two well-known models, viz. Harmonic Oscillator and one-dimensional potential well within the framework of Supersymmetry. For the Harmonic Oscillator case, we obtain similar periodic time dependence but dissimilar parameter dependences compared to the results obtained from both microcanonical and canonical ensembles in quantum mechanics without Supersymmetry. On the other hand, for the One-Dimensional PotentialWell problem, we found significantly different time scales and the other parameter dependence compared to the results obtained from non-Supersymmetric quantum mechanics. Finally, to establish the consistency of the prescribed formalism in the classical limit, we demonstrate the phase space averaged version of the classical version of OTOCs from a model-independent Hamiltonian, along with the previously mentioned well-cited models.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym13010044</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>OTOC ; out-of-equilibrium quantum statistical mechanics ; supersymmetry</subject><ispartof>Symmetry (Basel), 2020-12, Vol.13 (1), p.44</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-9b55b1122e0d2947233c0cbc80abd4f934a4bf6dbcf2b47f5d3c4f4dea08d0843</citedby><cites>FETCH-LOGICAL-c402t-9b55b1122e0d2947233c0cbc80abd4f934a4bf6dbcf2b47f5d3c4f4dea08d0843</cites><orcidid>0000-0002-0459-3873 ; 0000-0001-5855-2201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Bhagat, Kaushik Y.</creatorcontrib><creatorcontrib>Bose, Baibhab</creatorcontrib><creatorcontrib>Choudhury, Sayantan</creatorcontrib><creatorcontrib>Chowdhury, Satyaki</creatorcontrib><creatorcontrib>Das, Rathindra N.</creatorcontrib><creatorcontrib>Dastider, Saptarshhi G.</creatorcontrib><creatorcontrib>Gupta, Nitin</creatorcontrib><creatorcontrib>Maji, Archana</creatorcontrib><creatorcontrib>Pasquino, Gabriel D.</creatorcontrib><creatorcontrib>Paul, Swaraj</creatorcontrib><title>The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions</title><title>Symmetry (Basel)</title><description>The concept of the out-of-time-ordered correlation (OTOC) function is treated as a very strong theoretical probe of quantum randomness, using which one can study both chaotic and non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a general class of OTOC, which can perfectly capture quantum randomness phenomena in a better way. Further, we demonstrate an equivalent formalism of computation using a general time-independent Hamiltonian having well-defined eigenstate representation for integrable Supersymmetric quantum systems. We found that one needs to consider two new correlators apart from the usual one to have a complete quantum description. To visualize the impact of the given formalism, we consider the two well-known models, viz. Harmonic Oscillator and one-dimensional potential well within the framework of Supersymmetry. For the Harmonic Oscillator case, we obtain similar periodic time dependence but dissimilar parameter dependences compared to the results obtained from both microcanonical and canonical ensembles in quantum mechanics without Supersymmetry. On the other hand, for the One-Dimensional PotentialWell problem, we found significantly different time scales and the other parameter dependence compared to the results obtained from non-Supersymmetric quantum mechanics. Finally, to establish the consistency of the prescribed formalism in the classical limit, we demonstrate the phase space averaged version of the classical version of OTOCs from a model-independent Hamiltonian, along with the previously mentioned well-cited models.</description><subject>OTOC</subject><subject>out-of-equilibrium quantum statistical mechanics</subject><subject>supersymmetry</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkctOwkAUhhujiQRZ-QKzN9UznSm0S0MASTBEwHUzlzNQ0guZmS5w5SuY-IQ-iYUaw9mcW75v8wfBPYVHxlJ4cseSMqAAnF8FvQhGLEzSlF9fzLfBwLk9tBVDzIfQC742OyQzrNCKIv9ATZab5ZgYW5dk3RzQttISvc0VeWtE5ZuSvKLaiSpX7ufze-0bfSS1IStR6RaZFo3yjfB5XblOMsm3WDkvPJIVHiw6rPz5f6LGtbVYdOu0qdSZuwtujCgcDv56P3ifTjbjl3CxnM3Hz4tQcYh8mMo4lpRGEYKOUj6KGFOgpEpASM1Nyrjg0gy1VCaSfGRizRQ3XKOAREPCWT-Yd15di312sHkp7DGrRZ6dD7XdZsL6XBWYIbRKjFkqh0NONZdAo1jHMjHJyBigreuhcylbO2fR_PsoZKdwsotw2C_QbYbo</recordid><startdate>20201230</startdate><enddate>20201230</enddate><creator>Bhagat, Kaushik Y.</creator><creator>Bose, Baibhab</creator><creator>Choudhury, Sayantan</creator><creator>Chowdhury, Satyaki</creator><creator>Das, Rathindra N.</creator><creator>Dastider, Saptarshhi G.</creator><creator>Gupta, Nitin</creator><creator>Maji, Archana</creator><creator>Pasquino, Gabriel D.</creator><creator>Paul, Swaraj</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0459-3873</orcidid><orcidid>https://orcid.org/0000-0001-5855-2201</orcidid></search><sort><creationdate>20201230</creationdate><title>The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions</title><author>Bhagat, Kaushik Y. ; Bose, Baibhab ; Choudhury, Sayantan ; Chowdhury, Satyaki ; Das, Rathindra N. ; Dastider, Saptarshhi G. ; Gupta, Nitin ; Maji, Archana ; Pasquino, Gabriel D. ; Paul, Swaraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-9b55b1122e0d2947233c0cbc80abd4f934a4bf6dbcf2b47f5d3c4f4dea08d0843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>OTOC</topic><topic>out-of-equilibrium quantum statistical mechanics</topic><topic>supersymmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhagat, Kaushik Y.</creatorcontrib><creatorcontrib>Bose, Baibhab</creatorcontrib><creatorcontrib>Choudhury, Sayantan</creatorcontrib><creatorcontrib>Chowdhury, Satyaki</creatorcontrib><creatorcontrib>Das, Rathindra N.</creatorcontrib><creatorcontrib>Dastider, Saptarshhi G.</creatorcontrib><creatorcontrib>Gupta, Nitin</creatorcontrib><creatorcontrib>Maji, Archana</creatorcontrib><creatorcontrib>Pasquino, Gabriel D.</creatorcontrib><creatorcontrib>Paul, Swaraj</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhagat, Kaushik Y.</au><au>Bose, Baibhab</au><au>Choudhury, Sayantan</au><au>Chowdhury, Satyaki</au><au>Das, Rathindra N.</au><au>Dastider, Saptarshhi G.</au><au>Gupta, Nitin</au><au>Maji, Archana</au><au>Pasquino, Gabriel D.</au><au>Paul, Swaraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions</atitle><jtitle>Symmetry (Basel)</jtitle><date>2020-12-30</date><risdate>2020</risdate><volume>13</volume><issue>1</issue><spage>44</spage><pages>44-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>The concept of the out-of-time-ordered correlation (OTOC) function is treated as a very strong theoretical probe of quantum randomness, using which one can study both chaotic and non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a general class of OTOC, which can perfectly capture quantum randomness phenomena in a better way. Further, we demonstrate an equivalent formalism of computation using a general time-independent Hamiltonian having well-defined eigenstate representation for integrable Supersymmetric quantum systems. We found that one needs to consider two new correlators apart from the usual one to have a complete quantum description. To visualize the impact of the given formalism, we consider the two well-known models, viz. Harmonic Oscillator and one-dimensional potential well within the framework of Supersymmetry. For the Harmonic Oscillator case, we obtain similar periodic time dependence but dissimilar parameter dependences compared to the results obtained from both microcanonical and canonical ensembles in quantum mechanics without Supersymmetry. On the other hand, for the One-Dimensional PotentialWell problem, we found significantly different time scales and the other parameter dependence compared to the results obtained from non-Supersymmetric quantum mechanics. Finally, to establish the consistency of the prescribed formalism in the classical limit, we demonstrate the phase space averaged version of the classical version of OTOCs from a model-independent Hamiltonian, along with the previously mentioned well-cited models.</abstract><pub>MDPI AG</pub><doi>10.3390/sym13010044</doi><orcidid>https://orcid.org/0000-0002-0459-3873</orcidid><orcidid>https://orcid.org/0000-0001-5855-2201</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2020-12, Vol.13 (1), p.44
issn 2073-8994
2073-8994
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e0bd4e539b6641d4b0125d5b8f87ff01
source Publicly Available Content Database
subjects OTOC
out-of-equilibrium quantum statistical mechanics
supersymmetry
title The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Generalized%20OTOC%20from%20Supersymmetric%20Quantum%20Mechanics%E2%80%94Study%20of%20Random%20Fluctuations%20from%20Eigenstate%20Representation%20of%20Correlation%20Functions&rft.jtitle=Symmetry%20(Basel)&rft.au=Bhagat,%20Kaushik%20Y.&rft.date=2020-12-30&rft.volume=13&rft.issue=1&rft.spage=44&rft.pages=44-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym13010044&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_e0bd4e539b6641d4b0125d5b8f87ff01%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-9b55b1122e0d2947233c0cbc80abd4f934a4bf6dbcf2b47f5d3c4f4dea08d0843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true