Loading…
Modelling trust and risk for cloud services
A joint trust and risk model is introduced for federated cloud services. The model is based on cloud service providers’ performance history. It addresses provider and consumer concerns by relying on trusted third parties to collect soft and hard trust data elements, allowing for continuous risk moni...
Saved in:
Published in: | Journal of cloud computing : advances, systems and applications systems and applications, 2018-08, Vol.7 (1), p.1-16, Article 14 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-f69ac5bacb21659943c2ec694f4ecbc343efcf180dea94f938bd21f24e70e2713 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-f69ac5bacb21659943c2ec694f4ecbc343efcf180dea94f938bd21f24e70e2713 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of cloud computing : advances, systems and applications |
container_volume | 7 |
creator | Cayirci, Erdal de Oliveira, Anderson Santana |
description | A joint trust and risk model is introduced for federated cloud services. The model is based on cloud service providers’ performance history. It addresses provider and consumer concerns by relying on trusted third parties to collect soft and hard trust data elements, allowing for continuous risk monitoring in the cloud. The negative and positive tendencies in performance are differentiated and the freshness of the historic data is considered in the model. It addresses aleatory uncertainty through probability distributions and static stochastic simulation. An analytical insight into the model is also provided through the numerical analysis by Monte-Carlo simulation. |
doi_str_mv | 10.1186/s13677-018-0114-7 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e0da518be32b4464bb633ac2621b8504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e0da518be32b4464bb633ac2621b8504</doaj_id><sourcerecordid>oai_doaj_org_article_e0da518be32b4464bb633ac2621b8504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-f69ac5bacb21659943c2ec694f4ecbc343efcf180dea94f938bd21f24e70e2713</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz7A7z1LtVMkibtURY_Fla8KHgL-ZiUrrWRpCv47-1aEU8ehhmGeR-Yh5BzoJcAtbzKwKVSJYV6KhClOiILBg0rAfjL8Z_5lKxy3lFKgQLjtVqQi4fose-7oS3GtM9jYQZfpC6_FiGmwvVx74uM6aNzmM_ISTB9xtVPX5Ln25un9X25fbzbrK-3pROKjmWQjXGVNc4ykFXTCO4YOtmIINBZxwXH4ALU1KOZlg2vrWcQmEBFkSngS7KZuT6anX5P3ZtJnzqaTn8vYmq1SWPnetRIvamgtsiZFUIKayXnxjHJwNYVFRMLZpZLMeeE4ZcHVB_k6VmenuTpgzytpgybM3m6HVpMehf3aZhe_if0Ben2cPU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modelling trust and risk for cloud services</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><creator>Cayirci, Erdal ; de Oliveira, Anderson Santana</creator><creatorcontrib>Cayirci, Erdal ; de Oliveira, Anderson Santana</creatorcontrib><description>A joint trust and risk model is introduced for federated cloud services. The model is based on cloud service providers’ performance history. It addresses provider and consumer concerns by relying on trusted third parties to collect soft and hard trust data elements, allowing for continuous risk monitoring in the cloud. The negative and positive tendencies in performance are differentiated and the freshness of the historic data is considered in the model. It addresses aleatory uncertainty through probability distributions and static stochastic simulation. An analytical insight into the model is also provided through the numerical analysis by Monte-Carlo simulation.</description><identifier>ISSN: 2192-113X</identifier><identifier>EISSN: 2192-113X</identifier><identifier>DOI: 10.1186/s13677-018-0114-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accountability ; Cloud computing ; Computer Communication Networks ; Computer Science ; Computer System Implementation ; Computer Systems Organization and Communication Networks ; Information Systems Applications (incl.Internet) ; Reputation ; Risk ; Risk model ; Software Engineering/Programming and Operating Systems ; Special Purpose and Application-Based Systems ; Trust</subject><ispartof>Journal of cloud computing : advances, systems and applications, 2018-08, Vol.7 (1), p.1-16, Article 14</ispartof><rights>The Author(s). 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-f69ac5bacb21659943c2ec694f4ecbc343efcf180dea94f938bd21f24e70e2713</citedby><cites>FETCH-LOGICAL-c470t-f69ac5bacb21659943c2ec694f4ecbc343efcf180dea94f938bd21f24e70e2713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cayirci, Erdal</creatorcontrib><creatorcontrib>de Oliveira, Anderson Santana</creatorcontrib><title>Modelling trust and risk for cloud services</title><title>Journal of cloud computing : advances, systems and applications</title><addtitle>J Cloud Comp</addtitle><description>A joint trust and risk model is introduced for federated cloud services. The model is based on cloud service providers’ performance history. It addresses provider and consumer concerns by relying on trusted third parties to collect soft and hard trust data elements, allowing for continuous risk monitoring in the cloud. The negative and positive tendencies in performance are differentiated and the freshness of the historic data is considered in the model. It addresses aleatory uncertainty through probability distributions and static stochastic simulation. An analytical insight into the model is also provided through the numerical analysis by Monte-Carlo simulation.</description><subject>Accountability</subject><subject>Cloud computing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Computer System Implementation</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Reputation</subject><subject>Risk</subject><subject>Risk model</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Trust</subject><issn>2192-113X</issn><issn>2192-113X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE1LxDAQhoMouKz7A7z1LtVMkibtURY_Fla8KHgL-ZiUrrWRpCv47-1aEU8ehhmGeR-Yh5BzoJcAtbzKwKVSJYV6KhClOiILBg0rAfjL8Z_5lKxy3lFKgQLjtVqQi4fose-7oS3GtM9jYQZfpC6_FiGmwvVx74uM6aNzmM_ISTB9xtVPX5Ln25un9X25fbzbrK-3pROKjmWQjXGVNc4ykFXTCO4YOtmIINBZxwXH4ALU1KOZlg2vrWcQmEBFkSngS7KZuT6anX5P3ZtJnzqaTn8vYmq1SWPnetRIvamgtsiZFUIKayXnxjHJwNYVFRMLZpZLMeeE4ZcHVB_k6VmenuTpgzytpgybM3m6HVpMehf3aZhe_if0Ben2cPU</recordid><startdate>20180802</startdate><enddate>20180802</enddate><creator>Cayirci, Erdal</creator><creator>de Oliveira, Anderson Santana</creator><general>Springer Berlin Heidelberg</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20180802</creationdate><title>Modelling trust and risk for cloud services</title><author>Cayirci, Erdal ; de Oliveira, Anderson Santana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-f69ac5bacb21659943c2ec694f4ecbc343efcf180dea94f938bd21f24e70e2713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accountability</topic><topic>Cloud computing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Computer System Implementation</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Reputation</topic><topic>Risk</topic><topic>Risk model</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Trust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cayirci, Erdal</creatorcontrib><creatorcontrib>de Oliveira, Anderson Santana</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of cloud computing : advances, systems and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cayirci, Erdal</au><au>de Oliveira, Anderson Santana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling trust and risk for cloud services</atitle><jtitle>Journal of cloud computing : advances, systems and applications</jtitle><stitle>J Cloud Comp</stitle><date>2018-08-02</date><risdate>2018</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>14</artnum><issn>2192-113X</issn><eissn>2192-113X</eissn><abstract>A joint trust and risk model is introduced for federated cloud services. The model is based on cloud service providers’ performance history. It addresses provider and consumer concerns by relying on trusted third parties to collect soft and hard trust data elements, allowing for continuous risk monitoring in the cloud. The negative and positive tendencies in performance are differentiated and the freshness of the historic data is considered in the model. It addresses aleatory uncertainty through probability distributions and static stochastic simulation. An analytical insight into the model is also provided through the numerical analysis by Monte-Carlo simulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1186/s13677-018-0114-7</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-113X |
ispartof | Journal of cloud computing : advances, systems and applications, 2018-08, Vol.7 (1), p.1-16, Article 14 |
issn | 2192-113X 2192-113X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e0da518be32b4464bb633ac2621b8504 |
source | Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest) |
subjects | Accountability Cloud computing Computer Communication Networks Computer Science Computer System Implementation Computer Systems Organization and Communication Networks Information Systems Applications (incl.Internet) Reputation Risk Risk model Software Engineering/Programming and Operating Systems Special Purpose and Application-Based Systems Trust |
title | Modelling trust and risk for cloud services |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20trust%20and%20risk%20for%20cloud%20services&rft.jtitle=Journal%20of%20cloud%20computing%20:%20advances,%20systems%20and%20applications&rft.au=Cayirci,%20Erdal&rft.date=2018-08-02&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=14&rft.issn=2192-113X&rft.eissn=2192-113X&rft_id=info:doi/10.1186/s13677-018-0114-7&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_e0da518be32b4464bb633ac2621b8504%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-f69ac5bacb21659943c2ec694f4ecbc343efcf180dea94f938bd21f24e70e2713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |