Loading…

Modelling trust and risk for cloud services

A joint trust and risk model is introduced for federated cloud services. The model is based on cloud service providers’ performance history. It addresses provider and consumer concerns by relying on trusted third parties to collect soft and hard trust data elements, allowing for continuous risk moni...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cloud computing : advances, systems and applications systems and applications, 2018-08, Vol.7 (1), p.1-16, Article 14
Main Authors: Cayirci, Erdal, de Oliveira, Anderson Santana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-f69ac5bacb21659943c2ec694f4ecbc343efcf180dea94f938bd21f24e70e2713
cites cdi_FETCH-LOGICAL-c470t-f69ac5bacb21659943c2ec694f4ecbc343efcf180dea94f938bd21f24e70e2713
container_end_page 16
container_issue 1
container_start_page 1
container_title Journal of cloud computing : advances, systems and applications
container_volume 7
creator Cayirci, Erdal
de Oliveira, Anderson Santana
description A joint trust and risk model is introduced for federated cloud services. The model is based on cloud service providers’ performance history. It addresses provider and consumer concerns by relying on trusted third parties to collect soft and hard trust data elements, allowing for continuous risk monitoring in the cloud. The negative and positive tendencies in performance are differentiated and the freshness of the historic data is considered in the model. It addresses aleatory uncertainty through probability distributions and static stochastic simulation. An analytical insight into the model is also provided through the numerical analysis by Monte-Carlo simulation.
doi_str_mv 10.1186/s13677-018-0114-7
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e0da518be32b4464bb633ac2621b8504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e0da518be32b4464bb633ac2621b8504</doaj_id><sourcerecordid>oai_doaj_org_article_e0da518be32b4464bb633ac2621b8504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-f69ac5bacb21659943c2ec694f4ecbc343efcf180dea94f938bd21f24e70e2713</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz7A7z1LtVMkibtURY_Fla8KHgL-ZiUrrWRpCv47-1aEU8ehhmGeR-Yh5BzoJcAtbzKwKVSJYV6KhClOiILBg0rAfjL8Z_5lKxy3lFKgQLjtVqQi4fose-7oS3GtM9jYQZfpC6_FiGmwvVx74uM6aNzmM_ISTB9xtVPX5Ln25un9X25fbzbrK-3pROKjmWQjXGVNc4ykFXTCO4YOtmIINBZxwXH4ALU1KOZlg2vrWcQmEBFkSngS7KZuT6anX5P3ZtJnzqaTn8vYmq1SWPnetRIvamgtsiZFUIKayXnxjHJwNYVFRMLZpZLMeeE4ZcHVB_k6VmenuTpgzytpgybM3m6HVpMehf3aZhe_if0Ben2cPU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modelling trust and risk for cloud services</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><creator>Cayirci, Erdal ; de Oliveira, Anderson Santana</creator><creatorcontrib>Cayirci, Erdal ; de Oliveira, Anderson Santana</creatorcontrib><description>A joint trust and risk model is introduced for federated cloud services. The model is based on cloud service providers’ performance history. It addresses provider and consumer concerns by relying on trusted third parties to collect soft and hard trust data elements, allowing for continuous risk monitoring in the cloud. The negative and positive tendencies in performance are differentiated and the freshness of the historic data is considered in the model. It addresses aleatory uncertainty through probability distributions and static stochastic simulation. An analytical insight into the model is also provided through the numerical analysis by Monte-Carlo simulation.</description><identifier>ISSN: 2192-113X</identifier><identifier>EISSN: 2192-113X</identifier><identifier>DOI: 10.1186/s13677-018-0114-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accountability ; Cloud computing ; Computer Communication Networks ; Computer Science ; Computer System Implementation ; Computer Systems Organization and Communication Networks ; Information Systems Applications (incl.Internet) ; Reputation ; Risk ; Risk model ; Software Engineering/Programming and Operating Systems ; Special Purpose and Application-Based Systems ; Trust</subject><ispartof>Journal of cloud computing : advances, systems and applications, 2018-08, Vol.7 (1), p.1-16, Article 14</ispartof><rights>The Author(s). 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-f69ac5bacb21659943c2ec694f4ecbc343efcf180dea94f938bd21f24e70e2713</citedby><cites>FETCH-LOGICAL-c470t-f69ac5bacb21659943c2ec694f4ecbc343efcf180dea94f938bd21f24e70e2713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cayirci, Erdal</creatorcontrib><creatorcontrib>de Oliveira, Anderson Santana</creatorcontrib><title>Modelling trust and risk for cloud services</title><title>Journal of cloud computing : advances, systems and applications</title><addtitle>J Cloud Comp</addtitle><description>A joint trust and risk model is introduced for federated cloud services. The model is based on cloud service providers’ performance history. It addresses provider and consumer concerns by relying on trusted third parties to collect soft and hard trust data elements, allowing for continuous risk monitoring in the cloud. The negative and positive tendencies in performance are differentiated and the freshness of the historic data is considered in the model. It addresses aleatory uncertainty through probability distributions and static stochastic simulation. An analytical insight into the model is also provided through the numerical analysis by Monte-Carlo simulation.</description><subject>Accountability</subject><subject>Cloud computing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Computer System Implementation</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Reputation</subject><subject>Risk</subject><subject>Risk model</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Trust</subject><issn>2192-113X</issn><issn>2192-113X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE1LxDAQhoMouKz7A7z1LtVMkibtURY_Fla8KHgL-ZiUrrWRpCv47-1aEU8ehhmGeR-Yh5BzoJcAtbzKwKVSJYV6KhClOiILBg0rAfjL8Z_5lKxy3lFKgQLjtVqQi4fose-7oS3GtM9jYQZfpC6_FiGmwvVx74uM6aNzmM_ISTB9xtVPX5Ln25un9X25fbzbrK-3pROKjmWQjXGVNc4ykFXTCO4YOtmIINBZxwXH4ALU1KOZlg2vrWcQmEBFkSngS7KZuT6anX5P3ZtJnzqaTn8vYmq1SWPnetRIvamgtsiZFUIKayXnxjHJwNYVFRMLZpZLMeeE4ZcHVB_k6VmenuTpgzytpgybM3m6HVpMehf3aZhe_if0Ben2cPU</recordid><startdate>20180802</startdate><enddate>20180802</enddate><creator>Cayirci, Erdal</creator><creator>de Oliveira, Anderson Santana</creator><general>Springer Berlin Heidelberg</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20180802</creationdate><title>Modelling trust and risk for cloud services</title><author>Cayirci, Erdal ; de Oliveira, Anderson Santana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-f69ac5bacb21659943c2ec694f4ecbc343efcf180dea94f938bd21f24e70e2713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accountability</topic><topic>Cloud computing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Computer System Implementation</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Reputation</topic><topic>Risk</topic><topic>Risk model</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Trust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cayirci, Erdal</creatorcontrib><creatorcontrib>de Oliveira, Anderson Santana</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of cloud computing : advances, systems and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cayirci, Erdal</au><au>de Oliveira, Anderson Santana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling trust and risk for cloud services</atitle><jtitle>Journal of cloud computing : advances, systems and applications</jtitle><stitle>J Cloud Comp</stitle><date>2018-08-02</date><risdate>2018</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>14</artnum><issn>2192-113X</issn><eissn>2192-113X</eissn><abstract>A joint trust and risk model is introduced for federated cloud services. The model is based on cloud service providers’ performance history. It addresses provider and consumer concerns by relying on trusted third parties to collect soft and hard trust data elements, allowing for continuous risk monitoring in the cloud. The negative and positive tendencies in performance are differentiated and the freshness of the historic data is considered in the model. It addresses aleatory uncertainty through probability distributions and static stochastic simulation. An analytical insight into the model is also provided through the numerical analysis by Monte-Carlo simulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1186/s13677-018-0114-7</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-113X
ispartof Journal of cloud computing : advances, systems and applications, 2018-08, Vol.7 (1), p.1-16, Article 14
issn 2192-113X
2192-113X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e0da518be32b4464bb633ac2621b8504
source Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest)
subjects Accountability
Cloud computing
Computer Communication Networks
Computer Science
Computer System Implementation
Computer Systems Organization and Communication Networks
Information Systems Applications (incl.Internet)
Reputation
Risk
Risk model
Software Engineering/Programming and Operating Systems
Special Purpose and Application-Based Systems
Trust
title Modelling trust and risk for cloud services
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20trust%20and%20risk%20for%20cloud%20services&rft.jtitle=Journal%20of%20cloud%20computing%20:%20advances,%20systems%20and%20applications&rft.au=Cayirci,%20Erdal&rft.date=2018-08-02&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=14&rft.issn=2192-113X&rft.eissn=2192-113X&rft_id=info:doi/10.1186/s13677-018-0114-7&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_e0da518be32b4464bb633ac2621b8504%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-f69ac5bacb21659943c2ec694f4ecbc343efcf180dea94f938bd21f24e70e2713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true