Loading…

Feasibility of using thin crystalline silicon films epitaxially grown at 165 °C in solar cells: A computer simulation study

We have previously reported on the successful deposition of heterojunction solar cells whose thin intrinsic crystalline absorber layer is grown using the standard radio frequency plasma enhanced chemical vapour deposition process at 165 °C on highly doped P-type (100) crystalline silicon substrates....

Full description

Saved in:
Bibliographic Details
Published in:EPJ Photovoltaics 2013, Vol.4, p.45103
Main Authors: Chakraborty, S., Cariou, R., Labrune, M., Roca i Cabarrocas, P., Chatterjee, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3234-30f8260fd969054a73519dd1bfe60a9f2279af8bb9a873eb1e67dd5dfd5b21a13
cites cdi_FETCH-LOGICAL-c3234-30f8260fd969054a73519dd1bfe60a9f2279af8bb9a873eb1e67dd5dfd5b21a13
container_end_page
container_issue
container_start_page 45103
container_title EPJ Photovoltaics
container_volume 4
creator Chakraborty, S.
Cariou, R.
Labrune, M.
Roca i Cabarrocas, P.
Chatterjee, P.
description We have previously reported on the successful deposition of heterojunction solar cells whose thin intrinsic crystalline absorber layer is grown using the standard radio frequency plasma enhanced chemical vapour deposition process at 165 °C on highly doped P-type (100) crystalline silicon substrates. The structure had an N-doped hydrogenated amorphous silicon emitter deposited on top of the intrinsic epitaxial silicon layer. However to form the basis of a solar cell, the epitaxial silicon film must be chiefly responsible for the photo-generated current of the structure and not the underlying crystalline silicon substrate. In this article we use detailed electrical-optical modelling to calculate the minimum thickness of the epitaxial silicon layer for this to happen. We have also investigated by modelling the influence of the a-Si:H/epitaxial-Si and epitaxial-Si/c-Si interface defects, the thickness of the epitaxial silicon layer and its volume defect density on cell performance. Finally by varying the input parameters and considering various light-trapping schemes, we show that it is possible to attain a conversion efficiency in excess of 13% using only a 5 micron thick epitaxial silicon layer.
doi_str_mv 10.1051/epjpv/2013014
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e0e4f3f9b07244639fc317bfbd563c5c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e0e4f3f9b07244639fc317bfbd563c5c</doaj_id><sourcerecordid>3943641141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3234-30f8260fd969054a73519dd1bfe60a9f2279af8bb9a873eb1e67dd5dfd5b21a13</originalsourceid><addsrcrecordid>eNpNkV1rFTEQhhdRsLS99D7g9dp8bJKNd_VgtVAUiiJ4E_J5zDFnsyZZ7YI_yt_QX2baU6pzM8PMO88MvF33AsFXCFJ05ubd_PMMQ0QgGp50R7h1e8gRe_pf_bw7LWUHW4wQDoIddb8vnCpBhxjqCpIHSwnTFtRvYQImr6WqGMPkQGkCkybgQ9wX4OZQ1U1osxVsc_o1AVUBYhTc_tmAtllSVBkYF2N5Dc6BSft5qS43yn6JqoYGKnWx60n3zKtY3OlDPu4-X7z9tHnfX318d7k5v-oNwWToCfQjZtBbwQSkg-KEImEt0t4xqITHmAvlR62FGjlxGjnGraXWW6oxUogcd5cHrk1qJ-cc9iqvMqkg7xspb6XKNZjopINu8MQLDTkeBkaENwRx7bWljBhqGuvlgTXn9GNxpcpdWvLU3peIM8xGQYa7i_1BZXIqJTv_eBVBeeeXvPdLPvj1Tx9KdTePYpW_S8YJp3KEX-Sb6w9fEb6GEpK_S-mZhw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762689341</pqid></control><display><type>article</type><title>Feasibility of using thin crystalline silicon films epitaxially grown at 165 °C in solar cells: A computer simulation study</title><source>ROAD: Directory of Open Access Scholarly Resources</source><creator>Chakraborty, S. ; Cariou, R. ; Labrune, M. ; Roca i Cabarrocas, P. ; Chatterjee, P.</creator><creatorcontrib>Chakraborty, S. ; Cariou, R. ; Labrune, M. ; Roca i Cabarrocas, P. ; Chatterjee, P.</creatorcontrib><description>We have previously reported on the successful deposition of heterojunction solar cells whose thin intrinsic crystalline absorber layer is grown using the standard radio frequency plasma enhanced chemical vapour deposition process at 165 °C on highly doped P-type (100) crystalline silicon substrates. The structure had an N-doped hydrogenated amorphous silicon emitter deposited on top of the intrinsic epitaxial silicon layer. However to form the basis of a solar cell, the epitaxial silicon film must be chiefly responsible for the photo-generated current of the structure and not the underlying crystalline silicon substrate. In this article we use detailed electrical-optical modelling to calculate the minimum thickness of the epitaxial silicon layer for this to happen. We have also investigated by modelling the influence of the a-Si:H/epitaxial-Si and epitaxial-Si/c-Si interface defects, the thickness of the epitaxial silicon layer and its volume defect density on cell performance. Finally by varying the input parameters and considering various light-trapping schemes, we show that it is possible to attain a conversion efficiency in excess of 13% using only a 5 micron thick epitaxial silicon layer.</description><identifier>ISSN: 2105-0716</identifier><identifier>EISSN: 2105-0716</identifier><identifier>DOI: 10.1051/epjpv/2013014</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Amorphous silicon ; Computer simulation ; Crystal defects ; Crystal structure ; Crystallinity ; Defects ; Efficiency ; Emitters ; Epitaxial growth ; Heterojunctions ; Modelling ; Organic chemistry ; Photovoltaic cells ; Plasma enhanced chemical vapor deposition ; Plasma etching ; Radio frequency plasma ; Silicon films ; Silicon substrates ; Silicon wafers ; Solar cells ; Thickness ; Thin films</subject><ispartof>EPJ Photovoltaics, 2013, Vol.4, p.45103</ispartof><rights>2013. This work is licensed under http://creativecommons.org/licenses/by/2.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3234-30f8260fd969054a73519dd1bfe60a9f2279af8bb9a873eb1e67dd5dfd5b21a13</citedby><cites>FETCH-LOGICAL-c3234-30f8260fd969054a73519dd1bfe60a9f2279af8bb9a873eb1e67dd5dfd5b21a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Chakraborty, S.</creatorcontrib><creatorcontrib>Cariou, R.</creatorcontrib><creatorcontrib>Labrune, M.</creatorcontrib><creatorcontrib>Roca i Cabarrocas, P.</creatorcontrib><creatorcontrib>Chatterjee, P.</creatorcontrib><title>Feasibility of using thin crystalline silicon films epitaxially grown at 165 °C in solar cells: A computer simulation study</title><title>EPJ Photovoltaics</title><description>We have previously reported on the successful deposition of heterojunction solar cells whose thin intrinsic crystalline absorber layer is grown using the standard radio frequency plasma enhanced chemical vapour deposition process at 165 °C on highly doped P-type (100) crystalline silicon substrates. The structure had an N-doped hydrogenated amorphous silicon emitter deposited on top of the intrinsic epitaxial silicon layer. However to form the basis of a solar cell, the epitaxial silicon film must be chiefly responsible for the photo-generated current of the structure and not the underlying crystalline silicon substrate. In this article we use detailed electrical-optical modelling to calculate the minimum thickness of the epitaxial silicon layer for this to happen. We have also investigated by modelling the influence of the a-Si:H/epitaxial-Si and epitaxial-Si/c-Si interface defects, the thickness of the epitaxial silicon layer and its volume defect density on cell performance. Finally by varying the input parameters and considering various light-trapping schemes, we show that it is possible to attain a conversion efficiency in excess of 13% using only a 5 micron thick epitaxial silicon layer.</description><subject>Amorphous silicon</subject><subject>Computer simulation</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Defects</subject><subject>Efficiency</subject><subject>Emitters</subject><subject>Epitaxial growth</subject><subject>Heterojunctions</subject><subject>Modelling</subject><subject>Organic chemistry</subject><subject>Photovoltaic cells</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>Plasma etching</subject><subject>Radio frequency plasma</subject><subject>Silicon films</subject><subject>Silicon substrates</subject><subject>Silicon wafers</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>Thin films</subject><issn>2105-0716</issn><issn>2105-0716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkV1rFTEQhhdRsLS99D7g9dp8bJKNd_VgtVAUiiJ4E_J5zDFnsyZZ7YI_yt_QX2baU6pzM8PMO88MvF33AsFXCFJ05ubd_PMMQ0QgGp50R7h1e8gRe_pf_bw7LWUHW4wQDoIddb8vnCpBhxjqCpIHSwnTFtRvYQImr6WqGMPkQGkCkybgQ9wX4OZQ1U1osxVsc_o1AVUBYhTc_tmAtllSVBkYF2N5Dc6BSft5qS43yn6JqoYGKnWx60n3zKtY3OlDPu4-X7z9tHnfX318d7k5v-oNwWToCfQjZtBbwQSkg-KEImEt0t4xqITHmAvlR62FGjlxGjnGraXWW6oxUogcd5cHrk1qJ-cc9iqvMqkg7xspb6XKNZjopINu8MQLDTkeBkaENwRx7bWljBhqGuvlgTXn9GNxpcpdWvLU3peIM8xGQYa7i_1BZXIqJTv_eBVBeeeXvPdLPvj1Tx9KdTePYpW_S8YJp3KEX-Sb6w9fEb6GEpK_S-mZhw</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Chakraborty, S.</creator><creator>Cariou, R.</creator><creator>Labrune, M.</creator><creator>Roca i Cabarrocas, P.</creator><creator>Chatterjee, P.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>2013</creationdate><title>Feasibility of using thin crystalline silicon films epitaxially grown at 165 °C in solar cells: A computer simulation study</title><author>Chakraborty, S. ; Cariou, R. ; Labrune, M. ; Roca i Cabarrocas, P. ; Chatterjee, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3234-30f8260fd969054a73519dd1bfe60a9f2279af8bb9a873eb1e67dd5dfd5b21a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amorphous silicon</topic><topic>Computer simulation</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Defects</topic><topic>Efficiency</topic><topic>Emitters</topic><topic>Epitaxial growth</topic><topic>Heterojunctions</topic><topic>Modelling</topic><topic>Organic chemistry</topic><topic>Photovoltaic cells</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>Plasma etching</topic><topic>Radio frequency plasma</topic><topic>Silicon films</topic><topic>Silicon substrates</topic><topic>Silicon wafers</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, S.</creatorcontrib><creatorcontrib>Cariou, R.</creatorcontrib><creatorcontrib>Labrune, M.</creatorcontrib><creatorcontrib>Roca i Cabarrocas, P.</creatorcontrib><creatorcontrib>Chatterjee, P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>EPJ Photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, S.</au><au>Cariou, R.</au><au>Labrune, M.</au><au>Roca i Cabarrocas, P.</au><au>Chatterjee, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feasibility of using thin crystalline silicon films epitaxially grown at 165 °C in solar cells: A computer simulation study</atitle><jtitle>EPJ Photovoltaics</jtitle><date>2013</date><risdate>2013</risdate><volume>4</volume><spage>45103</spage><pages>45103-</pages><issn>2105-0716</issn><eissn>2105-0716</eissn><abstract>We have previously reported on the successful deposition of heterojunction solar cells whose thin intrinsic crystalline absorber layer is grown using the standard radio frequency plasma enhanced chemical vapour deposition process at 165 °C on highly doped P-type (100) crystalline silicon substrates. The structure had an N-doped hydrogenated amorphous silicon emitter deposited on top of the intrinsic epitaxial silicon layer. However to form the basis of a solar cell, the epitaxial silicon film must be chiefly responsible for the photo-generated current of the structure and not the underlying crystalline silicon substrate. In this article we use detailed electrical-optical modelling to calculate the minimum thickness of the epitaxial silicon layer for this to happen. We have also investigated by modelling the influence of the a-Si:H/epitaxial-Si and epitaxial-Si/c-Si interface defects, the thickness of the epitaxial silicon layer and its volume defect density on cell performance. Finally by varying the input parameters and considering various light-trapping schemes, we show that it is possible to attain a conversion efficiency in excess of 13% using only a 5 micron thick epitaxial silicon layer.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/epjpv/2013014</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2105-0716
ispartof EPJ Photovoltaics, 2013, Vol.4, p.45103
issn 2105-0716
2105-0716
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e0e4f3f9b07244639fc317bfbd563c5c
source ROAD: Directory of Open Access Scholarly Resources
subjects Amorphous silicon
Computer simulation
Crystal defects
Crystal structure
Crystallinity
Defects
Efficiency
Emitters
Epitaxial growth
Heterojunctions
Modelling
Organic chemistry
Photovoltaic cells
Plasma enhanced chemical vapor deposition
Plasma etching
Radio frequency plasma
Silicon films
Silicon substrates
Silicon wafers
Solar cells
Thickness
Thin films
title Feasibility of using thin crystalline silicon films epitaxially grown at 165 °C in solar cells: A computer simulation study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feasibility%20of%20using%20thin%20crystalline%20silicon%20films%20epitaxially%20grown%20at%20165%20%C2%B0C%20in%20solar%20cells:%20A%20computer%20simulation%20study&rft.jtitle=EPJ%20Photovoltaics&rft.au=Chakraborty,%20S.&rft.date=2013&rft.volume=4&rft.spage=45103&rft.pages=45103-&rft.issn=2105-0716&rft.eissn=2105-0716&rft_id=info:doi/10.1051/epjpv/2013014&rft_dat=%3Cproquest_doaj_%3E3943641141%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3234-30f8260fd969054a73519dd1bfe60a9f2279af8bb9a873eb1e67dd5dfd5b21a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762689341&rft_id=info:pmid/&rfr_iscdi=true