Loading…
Emerging Issues in Mapping Urban Impervious Surfaces Using High-Resolution Remote Sensing Images
Urban impervious surface (UIS) is a key parameter in climate change, environmental change, and sustainability. UIS extraction has been evolving rapidly in the past decades. However, high-resolution impervious surface mapping is a long-term need. There is an urgent requirement for impervious surface...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-05, Vol.15 (10), p.2562 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-87dd6738cabaeaedc29c7f88fc4219fd3683cfb9bff4e195a9ba68cf5bbd3be63 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-87dd6738cabaeaedc29c7f88fc4219fd3683cfb9bff4e195a9ba68cf5bbd3be63 |
container_end_page | |
container_issue | 10 |
container_start_page | 2562 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 15 |
creator | Shao, Zhenfeng Cheng, Tao Fu, Huyan Li, Deren Huang, Xiao |
description | Urban impervious surface (UIS) is a key parameter in climate change, environmental change, and sustainability. UIS extraction has been evolving rapidly in the past decades. However, high-resolution impervious surface mapping is a long-term need. There is an urgent requirement for impervious surface mapping from high-resolution remote sensing imagery. In this paper, we compare current extraction methods in terms of extraction units and extraction models and summarize their strengths and limitations. We discuss the challenges in impervious surface estimation from high spatial resolution remote sensing imagery in terms of selection of spatial resolution, spectral band, and extraction method. The uncertainties caused by clouds and snow, shadows, and vegetation occlusion are also analyzed. Automated sample labeling and remote sensing domain knowledge are the main directions in impervious surface extraction using deep learning methods. We should also focus on using continuous time series of high-resolution imagery and multi-source satellite imagery for dynamic monitoring of impervious surfaces. |
doi_str_mv | 10.3390/rs15102562 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e0f3999603bb478da0f10a743ac8eab8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752658019</galeid><doaj_id>oai_doaj_org_article_e0f3999603bb478da0f10a743ac8eab8</doaj_id><sourcerecordid>A752658019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-87dd6738cabaeaedc29c7f88fc4219fd3683cfb9bff4e195a9ba68cf5bbd3be63</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaWFLsle-gsMuRWc6MMf0nEJaWNICOx2z-pIHjla1pYr2YX--2p3S5qZwwxv3nsMM1n2hZJbziW5C5FWlLCqZh-yFSMNK0om2cd3_edsHeOBpOCcSlKusp8PA4bejX3exrhgzN2YP8M0nZB90DDm7TBh-O38EvPdEiyYRNrH0_zR9a_FFqM_LrPzY77Fwc-Y73A8j9sBeozX2ScLx4jrf_Uq2397-HH_WDy9fG_vN0-FKQmZC9F0Xd1wYUADAnaGSdNYIawpGZW247XgxmqprS2RygqkhloYW2ndcY01v8rai2_n4aCm4AYIf5QHp86AD72CMDtzRIXEcillTbjWZSM6IJYSaEoORiBokbxuLl5T8L_SUWZ18EsY0_qKCSpLwQg7sW4vrB6SqRutnwOYlB0OzvgRrUv4pqlYXQlCZRJ8vQhM8DEGtG9rUqJOH1T_P8j_AlGfjsk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819482028</pqid></control><display><type>article</type><title>Emerging Issues in Mapping Urban Impervious Surfaces Using High-Resolution Remote Sensing Images</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Shao, Zhenfeng ; Cheng, Tao ; Fu, Huyan ; Li, Deren ; Huang, Xiao</creator><creatorcontrib>Shao, Zhenfeng ; Cheng, Tao ; Fu, Huyan ; Li, Deren ; Huang, Xiao</creatorcontrib><description>Urban impervious surface (UIS) is a key parameter in climate change, environmental change, and sustainability. UIS extraction has been evolving rapidly in the past decades. However, high-resolution impervious surface mapping is a long-term need. There is an urgent requirement for impervious surface mapping from high-resolution remote sensing imagery. In this paper, we compare current extraction methods in terms of extraction units and extraction models and summarize their strengths and limitations. We discuss the challenges in impervious surface estimation from high spatial resolution remote sensing imagery in terms of selection of spatial resolution, spectral band, and extraction method. The uncertainties caused by clouds and snow, shadows, and vegetation occlusion are also analyzed. Automated sample labeling and remote sensing domain knowledge are the main directions in impervious surface extraction using deep learning methods. We should also focus on using continuous time series of high-resolution imagery and multi-source satellite imagery for dynamic monitoring of impervious surfaces.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15102562</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cities ; Climate change ; Climatic changes ; Deep learning ; Environmental changes ; High resolution ; Hydrology ; Image resolution ; impervious surface estimation ; Mapping ; Meteorological satellites ; Occlusion ; Permeability ; Population growth ; Remote sensing ; Satellite imagery ; Spatial discrimination ; Spatial resolution ; Sustainable development ; Urban areas ; Urban development ; urban mapping issues ; Urbanization</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-05, Vol.15 (10), p.2562</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-87dd6738cabaeaedc29c7f88fc4219fd3683cfb9bff4e195a9ba68cf5bbd3be63</citedby><cites>FETCH-LOGICAL-c400t-87dd6738cabaeaedc29c7f88fc4219fd3683cfb9bff4e195a9ba68cf5bbd3be63</cites><orcidid>0000-0002-2113-0280 ; 0000-0002-4323-382X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2819482028/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2819482028?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Shao, Zhenfeng</creatorcontrib><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Fu, Huyan</creatorcontrib><creatorcontrib>Li, Deren</creatorcontrib><creatorcontrib>Huang, Xiao</creatorcontrib><title>Emerging Issues in Mapping Urban Impervious Surfaces Using High-Resolution Remote Sensing Images</title><title>Remote sensing (Basel, Switzerland)</title><description>Urban impervious surface (UIS) is a key parameter in climate change, environmental change, and sustainability. UIS extraction has been evolving rapidly in the past decades. However, high-resolution impervious surface mapping is a long-term need. There is an urgent requirement for impervious surface mapping from high-resolution remote sensing imagery. In this paper, we compare current extraction methods in terms of extraction units and extraction models and summarize their strengths and limitations. We discuss the challenges in impervious surface estimation from high spatial resolution remote sensing imagery in terms of selection of spatial resolution, spectral band, and extraction method. The uncertainties caused by clouds and snow, shadows, and vegetation occlusion are also analyzed. Automated sample labeling and remote sensing domain knowledge are the main directions in impervious surface extraction using deep learning methods. We should also focus on using continuous time series of high-resolution imagery and multi-source satellite imagery for dynamic monitoring of impervious surfaces.</description><subject>Cities</subject><subject>Climate change</subject><subject>Climatic changes</subject><subject>Deep learning</subject><subject>Environmental changes</subject><subject>High resolution</subject><subject>Hydrology</subject><subject>Image resolution</subject><subject>impervious surface estimation</subject><subject>Mapping</subject><subject>Meteorological satellites</subject><subject>Occlusion</subject><subject>Permeability</subject><subject>Population growth</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Sustainable development</subject><subject>Urban areas</subject><subject>Urban development</subject><subject>urban mapping issues</subject><subject>Urbanization</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaWFLsle-gsMuRWc6MMf0nEJaWNICOx2z-pIHjla1pYr2YX--2p3S5qZwwxv3nsMM1n2hZJbziW5C5FWlLCqZh-yFSMNK0om2cd3_edsHeOBpOCcSlKusp8PA4bejX3exrhgzN2YP8M0nZB90DDm7TBh-O38EvPdEiyYRNrH0_zR9a_FFqM_LrPzY77Fwc-Y73A8j9sBeozX2ScLx4jrf_Uq2397-HH_WDy9fG_vN0-FKQmZC9F0Xd1wYUADAnaGSdNYIawpGZW247XgxmqprS2RygqkhloYW2ndcY01v8rai2_n4aCm4AYIf5QHp86AD72CMDtzRIXEcillTbjWZSM6IJYSaEoORiBokbxuLl5T8L_SUWZ18EsY0_qKCSpLwQg7sW4vrB6SqRutnwOYlB0OzvgRrUv4pqlYXQlCZRJ8vQhM8DEGtG9rUqJOH1T_P8j_AlGfjsk</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Shao, Zhenfeng</creator><creator>Cheng, Tao</creator><creator>Fu, Huyan</creator><creator>Li, Deren</creator><creator>Huang, Xiao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2113-0280</orcidid><orcidid>https://orcid.org/0000-0002-4323-382X</orcidid></search><sort><creationdate>20230501</creationdate><title>Emerging Issues in Mapping Urban Impervious Surfaces Using High-Resolution Remote Sensing Images</title><author>Shao, Zhenfeng ; Cheng, Tao ; Fu, Huyan ; Li, Deren ; Huang, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-87dd6738cabaeaedc29c7f88fc4219fd3683cfb9bff4e195a9ba68cf5bbd3be63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cities</topic><topic>Climate change</topic><topic>Climatic changes</topic><topic>Deep learning</topic><topic>Environmental changes</topic><topic>High resolution</topic><topic>Hydrology</topic><topic>Image resolution</topic><topic>impervious surface estimation</topic><topic>Mapping</topic><topic>Meteorological satellites</topic><topic>Occlusion</topic><topic>Permeability</topic><topic>Population growth</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Sustainable development</topic><topic>Urban areas</topic><topic>Urban development</topic><topic>urban mapping issues</topic><topic>Urbanization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Zhenfeng</creatorcontrib><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Fu, Huyan</creatorcontrib><creatorcontrib>Li, Deren</creatorcontrib><creatorcontrib>Huang, Xiao</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Zhenfeng</au><au>Cheng, Tao</au><au>Fu, Huyan</au><au>Li, Deren</au><au>Huang, Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emerging Issues in Mapping Urban Impervious Surfaces Using High-Resolution Remote Sensing Images</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>15</volume><issue>10</issue><spage>2562</spage><pages>2562-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Urban impervious surface (UIS) is a key parameter in climate change, environmental change, and sustainability. UIS extraction has been evolving rapidly in the past decades. However, high-resolution impervious surface mapping is a long-term need. There is an urgent requirement for impervious surface mapping from high-resolution remote sensing imagery. In this paper, we compare current extraction methods in terms of extraction units and extraction models and summarize their strengths and limitations. We discuss the challenges in impervious surface estimation from high spatial resolution remote sensing imagery in terms of selection of spatial resolution, spectral band, and extraction method. The uncertainties caused by clouds and snow, shadows, and vegetation occlusion are also analyzed. Automated sample labeling and remote sensing domain knowledge are the main directions in impervious surface extraction using deep learning methods. We should also focus on using continuous time series of high-resolution imagery and multi-source satellite imagery for dynamic monitoring of impervious surfaces.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15102562</doi><orcidid>https://orcid.org/0000-0002-2113-0280</orcidid><orcidid>https://orcid.org/0000-0002-4323-382X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2023-05, Vol.15 (10), p.2562 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e0f3999603bb478da0f10a743ac8eab8 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Cities Climate change Climatic changes Deep learning Environmental changes High resolution Hydrology Image resolution impervious surface estimation Mapping Meteorological satellites Occlusion Permeability Population growth Remote sensing Satellite imagery Spatial discrimination Spatial resolution Sustainable development Urban areas Urban development urban mapping issues Urbanization |
title | Emerging Issues in Mapping Urban Impervious Surfaces Using High-Resolution Remote Sensing Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emerging%20Issues%20in%20Mapping%20Urban%20Impervious%20Surfaces%20Using%20High-Resolution%20Remote%20Sensing%20Images&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Shao,%20Zhenfeng&rft.date=2023-05-01&rft.volume=15&rft.issue=10&rft.spage=2562&rft.pages=2562-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15102562&rft_dat=%3Cgale_doaj_%3EA752658019%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-87dd6738cabaeaedc29c7f88fc4219fd3683cfb9bff4e195a9ba68cf5bbd3be63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819482028&rft_id=info:pmid/&rft_galeid=A752658019&rfr_iscdi=true |