Loading…
Effect of Soil Properties and Powertrain Configuration on the Energy Consumption of Wheeled Electric Agricultural Robots
Agricultural emissions can be significantly reduced with smart farming, which includes moving away from large conventional tractors to fleets of compact wheeled electric robots. This paper presents a novel simulation modeling approach for an ATV-sized wheeled electric agricultural robot pulling an i...
Saved in:
Published in: | Energies (Basel) 2024-02, Vol.17 (4), p.966 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Agricultural emissions can be significantly reduced with smart farming, which includes moving away from large conventional tractors to fleets of compact wheeled electric robots. This paper presents a novel simulation modeling approach for an ATV-sized wheeled electric agricultural robot pulling an implement on deformable terrain. The 2D model features a semiempirical tire–soil interaction model as well as a powertrain model. Rear-wheel drive (RWD), front-wheel drive (FWD), and all-wheel drive (AWD) versions were developed. Simulations were carried out on two different soils to examine the energy consumption and tractive performance of the powertrain options. The results showed that energy consumption varies the least with AWD. However, RWD could provide lower energy consumption than AWD with light workloads due to lower curb weight. However, with the heaviest workload, AWD had 7.5% lower energy consumption than RWD. FWD was also found to be capable of lower energy consumption than AWD on light workloads, but it was unsuited for heavy workloads due to traction limitations. Overall, the results demonstrated the importance of taking the terrain characteristics and workload into account when designing electric agricultural robots. The developed modeling approach can prove useful for designing such machines and their fleet management. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en17040966 |