Loading…
Assessing Machinability and Surface characteristics of a Shape Memory Alloy (SMA) Processed through Wire Electro Spark Erosion Method
In this paper, a study was carried out to investigate the surface roughness and material removal rate of low carbon NiTi shape memory alloy (SMA) machined by Wire Electro Spark Erosion (WESE) technique. Experiments are designed considering three parameters viz, spark ON time (SON), spark OFF time (S...
Saved in:
Published in: | Archives of metallurgy and materials 2022-01, Vol.67 (3), p.921-930 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 930 |
container_issue | 3 |
container_start_page | 921 |
container_title | Archives of metallurgy and materials |
container_volume | 67 |
creator | George, Ebenezer Khan M., Adam Duraipandi, Chellaganesh Jappes J.T., Winowlin Haider, Julfikar |
description | In this paper, a study was carried out to investigate the surface roughness and material removal rate of low carbon NiTi shape memory alloy (SMA) machined by Wire Electro Spark Erosion (WESE) technique. Experiments are designed considering three parameters viz, spark ON time (SON), spark OFF time (SOFF), and voltage (V) at three levels each. The surface roughness increased from 2.1686 μm to 2.6869 μm with an increase in both SON time, SOFF time and a decrease in voltage. The material removal rate increased from 1.272 mm3/min to 1.616 mm3/min with an increase in SON time but a varying effect was observed the SOFF time and voltage were varied. The analysis revealed that the intensity and duration of the spark had an unswerving relation with the concentration of the microcracks and micropores. More microcracks and micropores were seen in the combination of SON = 120 µs, voltage = 30 V. The concentration of the microcracks and micropores could be minimised by using an appropriate parameter setting. Therefore, considering the surface analysis and material removal, the low carbon NiTi alloy is recommended to machine with 110 μs – 55 μs – 30 v (SON – SOFF – V respectively), to achieve better surface roughness with minimal surface damage. |
doi_str_mv | 10.24425/amm.2022.139684 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e131711ab29447f3a5ad4ddf24d4ba40</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e131711ab29447f3a5ad4ddf24d4ba40</doaj_id><sourcerecordid>2831282791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-c1eea20c24989a2c6591ee621235ffbc90d5f258af731d0e3352aa679dcc79203</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoKDWnuPQpyaQ92pZHWuzqa4CSGmBbc0qMY68MrZ71yR-uDf0D_d5S4hMxlhsebN_N4VfVF8CkoBfV33O-nwAGmQupZqz5UlyA5nwjN9cW7-VN1nfOOl2q4EkJdVv_mOfuc47BlK7RdHHAT-zieGA6OrY8U0HpmOyS0o6eYx2gzS4EhW3d48Gzl94lObN736cS-rlfzb-wnJVskvWNjR-m47difSJ4tem9HSmx9QHpiC0o5pqHsj11yn6uPAfvsr__3q-r33eLX7cPk8cf98nb-OLFSwjixwnsEbkHpViPYWa0LMgMBsg5hYzV3dYC6xdBI4biXsgbEWaOdtY0GLq-q5VnXJdyZA8U90skkjOYVSLQ1SMVi740XUjRC4Aa0Uk2QWKNTzgVQTm1QvWjdnLUOlP4efR7NLh1pKO8baKWAFhotCoufWbYYzuTD21XBzWt2pmRnXrIz5-zkM4ysjN8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831282791</pqid></control><display><type>article</type><title>Assessing Machinability and Surface characteristics of a Shape Memory Alloy (SMA) Processed through Wire Electro Spark Erosion Method</title><source>Publicly Available Content Database</source><creator>George, Ebenezer ; Khan M., Adam ; Duraipandi, Chellaganesh ; Jappes J.T., Winowlin ; Haider, Julfikar</creator><creatorcontrib>George, Ebenezer ; Khan M., Adam ; Duraipandi, Chellaganesh ; Jappes J.T., Winowlin ; Haider, Julfikar</creatorcontrib><description>In this paper, a study was carried out to investigate the surface roughness and material removal rate of low carbon NiTi shape memory alloy (SMA) machined by Wire Electro Spark Erosion (WESE) technique. Experiments are designed considering three parameters viz, spark ON time (SON), spark OFF time (SOFF), and voltage (V) at three levels each. The surface roughness increased from 2.1686 μm to 2.6869 μm with an increase in both SON time, SOFF time and a decrease in voltage. The material removal rate increased from 1.272 mm3/min to 1.616 mm3/min with an increase in SON time but a varying effect was observed the SOFF time and voltage were varied. The analysis revealed that the intensity and duration of the spark had an unswerving relation with the concentration of the microcracks and micropores. More microcracks and micropores were seen in the combination of SON = 120 µs, voltage = 30 V. The concentration of the microcracks and micropores could be minimised by using an appropriate parameter setting. Therefore, considering the surface analysis and material removal, the low carbon NiTi alloy is recommended to machine with 110 μs – 55 μs – 30 v (SON – SOFF – V respectively), to achieve better surface roughness with minimal surface damage.</description><identifier>ISSN: 2300-1909</identifier><identifier>ISSN: 1733-3490</identifier><identifier>EISSN: 2300-1909</identifier><identifier>DOI: 10.24425/amm.2022.139684</identifier><language>eng</language><publisher>Warsaw: Polish Academy of Sciences</publisher><subject>Carbon ; Carbon content ; Electric potential ; Intermetallic compounds ; Investigations ; Machinability ; machining ; Material removal rate (machining) ; material removal rate (mrr) ; Metal fatigue ; Microcracks ; Minimal surfaces ; Nickel base alloys ; Nickel titanides ; niti alloy ; Parameters ; Shape memory alloys ; Surface analysis (chemical) ; Surface properties ; Surface roughness ; Thermal energy ; Titanium alloys ; Voltage ; Wire ; wire electro spark erosion</subject><ispartof>Archives of metallurgy and materials, 2022-01, Vol.67 (3), p.921-930</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8516-8560 ; 0000-0003-4014-9611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2831282791?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>George, Ebenezer</creatorcontrib><creatorcontrib>Khan M., Adam</creatorcontrib><creatorcontrib>Duraipandi, Chellaganesh</creatorcontrib><creatorcontrib>Jappes J.T., Winowlin</creatorcontrib><creatorcontrib>Haider, Julfikar</creatorcontrib><title>Assessing Machinability and Surface characteristics of a Shape Memory Alloy (SMA) Processed through Wire Electro Spark Erosion Method</title><title>Archives of metallurgy and materials</title><description>In this paper, a study was carried out to investigate the surface roughness and material removal rate of low carbon NiTi shape memory alloy (SMA) machined by Wire Electro Spark Erosion (WESE) technique. Experiments are designed considering three parameters viz, spark ON time (SON), spark OFF time (SOFF), and voltage (V) at three levels each. The surface roughness increased from 2.1686 μm to 2.6869 μm with an increase in both SON time, SOFF time and a decrease in voltage. The material removal rate increased from 1.272 mm3/min to 1.616 mm3/min with an increase in SON time but a varying effect was observed the SOFF time and voltage were varied. The analysis revealed that the intensity and duration of the spark had an unswerving relation with the concentration of the microcracks and micropores. More microcracks and micropores were seen in the combination of SON = 120 µs, voltage = 30 V. The concentration of the microcracks and micropores could be minimised by using an appropriate parameter setting. Therefore, considering the surface analysis and material removal, the low carbon NiTi alloy is recommended to machine with 110 μs – 55 μs – 30 v (SON – SOFF – V respectively), to achieve better surface roughness with minimal surface damage.</description><subject>Carbon</subject><subject>Carbon content</subject><subject>Electric potential</subject><subject>Intermetallic compounds</subject><subject>Investigations</subject><subject>Machinability</subject><subject>machining</subject><subject>Material removal rate (machining)</subject><subject>material removal rate (mrr)</subject><subject>Metal fatigue</subject><subject>Microcracks</subject><subject>Minimal surfaces</subject><subject>Nickel base alloys</subject><subject>Nickel titanides</subject><subject>niti alloy</subject><subject>Parameters</subject><subject>Shape memory alloys</subject><subject>Surface analysis (chemical)</subject><subject>Surface properties</subject><subject>Surface roughness</subject><subject>Thermal energy</subject><subject>Titanium alloys</subject><subject>Voltage</subject><subject>Wire</subject><subject>wire electro spark erosion</subject><issn>2300-1909</issn><issn>1733-3490</issn><issn>2300-1909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoKDWnuPQpyaQ92pZHWuzqa4CSGmBbc0qMY68MrZ71yR-uDf0D_d5S4hMxlhsebN_N4VfVF8CkoBfV33O-nwAGmQupZqz5UlyA5nwjN9cW7-VN1nfOOl2q4EkJdVv_mOfuc47BlK7RdHHAT-zieGA6OrY8U0HpmOyS0o6eYx2gzS4EhW3d48Gzl94lObN736cS-rlfzb-wnJVskvWNjR-m47difSJ4tem9HSmx9QHpiC0o5pqHsj11yn6uPAfvsr__3q-r33eLX7cPk8cf98nb-OLFSwjixwnsEbkHpViPYWa0LMgMBsg5hYzV3dYC6xdBI4biXsgbEWaOdtY0GLq-q5VnXJdyZA8U90skkjOYVSLQ1SMVi740XUjRC4Aa0Uk2QWKNTzgVQTm1QvWjdnLUOlP4efR7NLh1pKO8baKWAFhotCoufWbYYzuTD21XBzWt2pmRnXrIz5-zkM4ysjN8</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>George, Ebenezer</creator><creator>Khan M., Adam</creator><creator>Duraipandi, Chellaganesh</creator><creator>Jappes J.T., Winowlin</creator><creator>Haider, Julfikar</creator><general>Polish Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8516-8560</orcidid><orcidid>https://orcid.org/0000-0003-4014-9611</orcidid></search><sort><creationdate>20220101</creationdate><title>Assessing Machinability and Surface characteristics of a Shape Memory Alloy (SMA) Processed through Wire Electro Spark Erosion Method</title><author>George, Ebenezer ; Khan M., Adam ; Duraipandi, Chellaganesh ; Jappes J.T., Winowlin ; Haider, Julfikar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-c1eea20c24989a2c6591ee621235ffbc90d5f258af731d0e3352aa679dcc79203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon</topic><topic>Carbon content</topic><topic>Electric potential</topic><topic>Intermetallic compounds</topic><topic>Investigations</topic><topic>Machinability</topic><topic>machining</topic><topic>Material removal rate (machining)</topic><topic>material removal rate (mrr)</topic><topic>Metal fatigue</topic><topic>Microcracks</topic><topic>Minimal surfaces</topic><topic>Nickel base alloys</topic><topic>Nickel titanides</topic><topic>niti alloy</topic><topic>Parameters</topic><topic>Shape memory alloys</topic><topic>Surface analysis (chemical)</topic><topic>Surface properties</topic><topic>Surface roughness</topic><topic>Thermal energy</topic><topic>Titanium alloys</topic><topic>Voltage</topic><topic>Wire</topic><topic>wire electro spark erosion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>George, Ebenezer</creatorcontrib><creatorcontrib>Khan M., Adam</creatorcontrib><creatorcontrib>Duraipandi, Chellaganesh</creatorcontrib><creatorcontrib>Jappes J.T., Winowlin</creatorcontrib><creatorcontrib>Haider, Julfikar</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Archives of metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>George, Ebenezer</au><au>Khan M., Adam</au><au>Duraipandi, Chellaganesh</au><au>Jappes J.T., Winowlin</au><au>Haider, Julfikar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing Machinability and Surface characteristics of a Shape Memory Alloy (SMA) Processed through Wire Electro Spark Erosion Method</atitle><jtitle>Archives of metallurgy and materials</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>67</volume><issue>3</issue><spage>921</spage><epage>930</epage><pages>921-930</pages><issn>2300-1909</issn><issn>1733-3490</issn><eissn>2300-1909</eissn><abstract>In this paper, a study was carried out to investigate the surface roughness and material removal rate of low carbon NiTi shape memory alloy (SMA) machined by Wire Electro Spark Erosion (WESE) technique. Experiments are designed considering three parameters viz, spark ON time (SON), spark OFF time (SOFF), and voltage (V) at three levels each. The surface roughness increased from 2.1686 μm to 2.6869 μm with an increase in both SON time, SOFF time and a decrease in voltage. The material removal rate increased from 1.272 mm3/min to 1.616 mm3/min with an increase in SON time but a varying effect was observed the SOFF time and voltage were varied. The analysis revealed that the intensity and duration of the spark had an unswerving relation with the concentration of the microcracks and micropores. More microcracks and micropores were seen in the combination of SON = 120 µs, voltage = 30 V. The concentration of the microcracks and micropores could be minimised by using an appropriate parameter setting. Therefore, considering the surface analysis and material removal, the low carbon NiTi alloy is recommended to machine with 110 μs – 55 μs – 30 v (SON – SOFF – V respectively), to achieve better surface roughness with minimal surface damage.</abstract><cop>Warsaw</cop><pub>Polish Academy of Sciences</pub><doi>10.24425/amm.2022.139684</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8516-8560</orcidid><orcidid>https://orcid.org/0000-0003-4014-9611</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2300-1909 |
ispartof | Archives of metallurgy and materials, 2022-01, Vol.67 (3), p.921-930 |
issn | 2300-1909 1733-3490 2300-1909 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e131711ab29447f3a5ad4ddf24d4ba40 |
source | Publicly Available Content Database |
subjects | Carbon Carbon content Electric potential Intermetallic compounds Investigations Machinability machining Material removal rate (machining) material removal rate (mrr) Metal fatigue Microcracks Minimal surfaces Nickel base alloys Nickel titanides niti alloy Parameters Shape memory alloys Surface analysis (chemical) Surface properties Surface roughness Thermal energy Titanium alloys Voltage Wire wire electro spark erosion |
title | Assessing Machinability and Surface characteristics of a Shape Memory Alloy (SMA) Processed through Wire Electro Spark Erosion Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20Machinability%20and%20Surface%20characteristics%20of%20a%20Shape%20Memory%20Alloy%20(SMA)%20Processed%20through%20Wire%20Electro%20Spark%20Erosion%20Method&rft.jtitle=Archives%20of%20metallurgy%20and%20materials&rft.au=George,%20Ebenezer&rft.date=2022-01-01&rft.volume=67&rft.issue=3&rft.spage=921&rft.epage=930&rft.pages=921-930&rft.issn=2300-1909&rft.eissn=2300-1909&rft_id=info:doi/10.24425/amm.2022.139684&rft_dat=%3Cproquest_doaj_%3E2831282791%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-c1eea20c24989a2c6591ee621235ffbc90d5f258af731d0e3352aa679dcc79203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2831282791&rft_id=info:pmid/&rfr_iscdi=true |