Loading…
Water Demand Pattern and Irrigation Decision-Making Support Model for Drip-Irrigated Tomato Crop in a Solar Greenhouse
The knowledge of crop water requirements is critical for agricultural water conservation, especially for accurate irrigation decision making in the greenhouse. Investigating the water demand pattern of the tomato in the solar greenhouse environment and constructing an appropriate irrigation decision...
Saved in:
Published in: | Agronomy (Basel) 2022-07, Vol.12 (7), p.1668 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The knowledge of crop water requirements is critical for agricultural water conservation, especially for accurate irrigation decision making in the greenhouse. Investigating the water demand pattern of the tomato in the solar greenhouse environment and constructing an appropriate irrigation decision-making model are urgently needed to improve irrigation water use efficiency. We designed four irrigation-level treatments: 100% ET0 (T1), 85% ET0 (T2), 70% ET0 (T3), and 55% ET0 (T4), and conducted a two-vegetation-season tomato planting trial under drip irrigation conditions in a solar greenhouse. The Pearson’s correlation coefficient method analyzed the intrinsic linkage and influence between soil–crop–environment and tomatoes’ water demand patterns. Indicators suitable for irrigation decision making in greenhouse tomatoes were selected, and regression functions were constructed for environmental and crop physiological parameters by combining path analysis and multiple regression methods. Finally, a fusion irrigation decision-making model was constructed by introducing a distance function in the Dempster–Shafer (D–S) theory primary probability assignment (BPA) synthesis algorithm and combining it with a triangular affiliation function. The results showed that: (1) the soil coefficient of variation was shallow > middle > deep, and tomatoes absorbed water mainly in the 0–60 cm soil layer; (2) the crop stem flow rate, net photosynthetic rate, and transpiration rate were positively correlated with irrigation water and had the highest correlation with net radiation, relative humidity, and relative humidity, with correlation coefficients of 0.9441, 0.9441, and 0.7679, respectively; (3) the constructed decision model had a significantly lower value of uncertainty than other methods, while the highest decision value could reach over 0.99, which achieved the best decision accuracy compared to other algorithms. |
---|---|
ISSN: | 2073-4395 2073-4395 |
DOI: | 10.3390/agronomy12071668 |