Loading…

An Enhanced Frequency Analysis and Machine Learning Based Approach for Open Circuit Failures in PV Systems

Over the last decades, the accelerated implementation of photovoltaic systems (PVS) has led to the creation of open circuit fault detection systems based on measurements made in completed facilities, growing by making the volume of data to be analyzed with each new installation, improving fault dete...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.96342-96357
Main Authors: Lavador-Osorio, Mauricio, Zuniga-Reyes, Marco-Antonio, Alvarez-Alvarado, Jose M., Sevilla-Camacho, Perla-Yazmin, Garduno-Aparicio, Mariano, Rodriguez-Resendiz, Juvenal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c261t-ffc9aaeeb09d5d1db3cd5b95d0e64f3c5fb683cc6615722f409575b61075caa53
container_end_page 96357
container_issue
container_start_page 96342
container_title IEEE access
container_volume 12
creator Lavador-Osorio, Mauricio
Zuniga-Reyes, Marco-Antonio
Alvarez-Alvarado, Jose M.
Sevilla-Camacho, Perla-Yazmin
Garduno-Aparicio, Mariano
Rodriguez-Resendiz, Juvenal
description Over the last decades, the accelerated implementation of photovoltaic systems (PVS) has led to the creation of open circuit fault detection systems based on measurements made in completed facilities, growing by making the volume of data to be analyzed with each new installation, improving fault detection and location systems with various methods. In this article, an electronic adaptive device was developed that operates under a method based on the spectral analysis of signals using the Discrete Fourier Transform (DFT) and a classifier based on the k-Nearest Neighbor (k-NN) machine learning algorithm (ML) for the detection of Open Circuit Faults (OCF). The contribution of this work is that the entire photovoltaic array operated in conditions of radiance less than 10~\frac {W}{m^{2}} overnight with a red LED pulsed light applied on the photovoltaic array module furthest from the inverter. Under these operating conditions, the presence of an open circuit fault alters the variability in the impedances of the photovoltaic array under different fault locations in the systems compared to healthy systems without an open circuit fault, revealing that the predictability of the methodology shows values from 90% to 93% as the size of the photovoltaic system increases, concluding the effectiveness of the procedure.
doi_str_mv 10.1109/ACCESS.2024.3425486
format article
fullrecord <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e1518953132440d99b45f1d4785de8f2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10589626</ieee_id><doaj_id>oai_doaj_org_article_e1518953132440d99b45f1d4785de8f2</doaj_id><sourcerecordid>oai_doaj_org_article_e1518953132440d99b45f1d4785de8f2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-ffc9aaeeb09d5d1db3cd5b95d0e64f3c5fb683cc6615722f409575b61075caa53</originalsourceid><addsrcrecordid>eNpNkN1OAjEQhTdGEwn6BHrRFwD7z_Zy3YCSYDBBvW267VRLli62cMHbuwoxzM1Mzsw5yXxFcUfwmBCsHqq6nq5WY4opHzNOBS_lRTGgRKoRE0xens3XxW3Oa9xX2UtiMijWVUTT-GWiBYdmCb73EO0BVdG0hxwyMtGhF2O_QgS0AJNiiJ_o0eT-utpuU9evkO8SWm4hojokuw87NDOh3SfIKET0-oFWh7yDTb4prrxpM9ye-rB4n03f6ufRYvk0r6vFyFJJdiPvrTIGoMHKCUdcw6wTjRIOg-SeWeEbWTJrpSRiQqnnuH9ENJLgibDGCDYs5sdc15m13qawMemgOxP0n9ClT23SLtgWNBBBSiUYYZRz7JRquPDE8UkpHJSe9lnsmGVTl3MC_59HsP6lr4_09S99faLfu-6PrgAAZw5RKkkl-wGYQIDI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Enhanced Frequency Analysis and Machine Learning Based Approach for Open Circuit Failures in PV Systems</title><source>IEEE Xplore Open Access Journals</source><creator>Lavador-Osorio, Mauricio ; Zuniga-Reyes, Marco-Antonio ; Alvarez-Alvarado, Jose M. ; Sevilla-Camacho, Perla-Yazmin ; Garduno-Aparicio, Mariano ; Rodriguez-Resendiz, Juvenal</creator><creatorcontrib>Lavador-Osorio, Mauricio ; Zuniga-Reyes, Marco-Antonio ; Alvarez-Alvarado, Jose M. ; Sevilla-Camacho, Perla-Yazmin ; Garduno-Aparicio, Mariano ; Rodriguez-Resendiz, Juvenal</creatorcontrib><description>Over the last decades, the accelerated implementation of photovoltaic systems (PVS) has led to the creation of open circuit fault detection systems based on measurements made in completed facilities, growing by making the volume of data to be analyzed with each new installation, improving fault detection and location systems with various methods. In this article, an electronic adaptive device was developed that operates under a method based on the spectral analysis of signals using the Discrete Fourier Transform (DFT) and a classifier based on the k-Nearest Neighbor (k-NN) machine learning algorithm (ML) for the detection of Open Circuit Faults (OCF). The contribution of this work is that the entire photovoltaic array operated in conditions of radiance less than &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;10~\frac {W}{m^{2}} &lt;/tex-math&gt;&lt;/inline-formula&gt; overnight with a red LED pulsed light applied on the photovoltaic array module furthest from the inverter. Under these operating conditions, the presence of an open circuit fault alters the variability in the impedances of the photovoltaic array under different fault locations in the systems compared to healthy systems without an open circuit fault, revealing that the predictability of the methodology shows values from 90% to 93% as the size of the photovoltaic system increases, concluding the effectiveness of the procedure.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3425486</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuit faults ; Current measurement ; discrete Fourier transform ; Discrete Fourier transforms ; dynamic impedance in photovoltaic systems ; Electrical fault detection ; Fault detection ; Fault detection in photovoltaic systems ; Heuristic algorithms ; Inverters ; KNN algorithm ; Machine learning ; Nearest neighbor methods ; open circuit fault detection ; Photovoltaic systems ; Solar power generation ; Temperature measurement ; Voltage measurement</subject><ispartof>IEEE access, 2024, Vol.12, p.96342-96357</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-ffc9aaeeb09d5d1db3cd5b95d0e64f3c5fb683cc6615722f409575b61075caa53</cites><orcidid>0000-0002-1304-6791 ; 0000-0002-7737-2115 ; 0000-0002-9702-1929 ; 0000-0001-8598-5600 ; 0009-0006-8144-1458 ; 0000-0003-1549-232X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10589626$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Lavador-Osorio, Mauricio</creatorcontrib><creatorcontrib>Zuniga-Reyes, Marco-Antonio</creatorcontrib><creatorcontrib>Alvarez-Alvarado, Jose M.</creatorcontrib><creatorcontrib>Sevilla-Camacho, Perla-Yazmin</creatorcontrib><creatorcontrib>Garduno-Aparicio, Mariano</creatorcontrib><creatorcontrib>Rodriguez-Resendiz, Juvenal</creatorcontrib><title>An Enhanced Frequency Analysis and Machine Learning Based Approach for Open Circuit Failures in PV Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>Over the last decades, the accelerated implementation of photovoltaic systems (PVS) has led to the creation of open circuit fault detection systems based on measurements made in completed facilities, growing by making the volume of data to be analyzed with each new installation, improving fault detection and location systems with various methods. In this article, an electronic adaptive device was developed that operates under a method based on the spectral analysis of signals using the Discrete Fourier Transform (DFT) and a classifier based on the k-Nearest Neighbor (k-NN) machine learning algorithm (ML) for the detection of Open Circuit Faults (OCF). The contribution of this work is that the entire photovoltaic array operated in conditions of radiance less than &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;10~\frac {W}{m^{2}} &lt;/tex-math&gt;&lt;/inline-formula&gt; overnight with a red LED pulsed light applied on the photovoltaic array module furthest from the inverter. Under these operating conditions, the presence of an open circuit fault alters the variability in the impedances of the photovoltaic array under different fault locations in the systems compared to healthy systems without an open circuit fault, revealing that the predictability of the methodology shows values from 90% to 93% as the size of the photovoltaic system increases, concluding the effectiveness of the procedure.</description><subject>Circuit faults</subject><subject>Current measurement</subject><subject>discrete Fourier transform</subject><subject>Discrete Fourier transforms</subject><subject>dynamic impedance in photovoltaic systems</subject><subject>Electrical fault detection</subject><subject>Fault detection</subject><subject>Fault detection in photovoltaic systems</subject><subject>Heuristic algorithms</subject><subject>Inverters</subject><subject>KNN algorithm</subject><subject>Machine learning</subject><subject>Nearest neighbor methods</subject><subject>open circuit fault detection</subject><subject>Photovoltaic systems</subject><subject>Solar power generation</subject><subject>Temperature measurement</subject><subject>Voltage measurement</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkN1OAjEQhTdGEwn6BHrRFwD7z_Zy3YCSYDBBvW267VRLli62cMHbuwoxzM1Mzsw5yXxFcUfwmBCsHqq6nq5WY4opHzNOBS_lRTGgRKoRE0xens3XxW3Oa9xX2UtiMijWVUTT-GWiBYdmCb73EO0BVdG0hxwyMtGhF2O_QgS0AJNiiJ_o0eT-utpuU9evkO8SWm4hojokuw87NDOh3SfIKET0-oFWh7yDTb4prrxpM9ye-rB4n03f6ufRYvk0r6vFyFJJdiPvrTIGoMHKCUdcw6wTjRIOg-SeWeEbWTJrpSRiQqnnuH9ENJLgibDGCDYs5sdc15m13qawMemgOxP0n9ClT23SLtgWNBBBSiUYYZRz7JRquPDE8UkpHJSe9lnsmGVTl3MC_59HsP6lr4_09S99faLfu-6PrgAAZw5RKkkl-wGYQIDI</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lavador-Osorio, Mauricio</creator><creator>Zuniga-Reyes, Marco-Antonio</creator><creator>Alvarez-Alvarado, Jose M.</creator><creator>Sevilla-Camacho, Perla-Yazmin</creator><creator>Garduno-Aparicio, Mariano</creator><creator>Rodriguez-Resendiz, Juvenal</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1304-6791</orcidid><orcidid>https://orcid.org/0000-0002-7737-2115</orcidid><orcidid>https://orcid.org/0000-0002-9702-1929</orcidid><orcidid>https://orcid.org/0000-0001-8598-5600</orcidid><orcidid>https://orcid.org/0009-0006-8144-1458</orcidid><orcidid>https://orcid.org/0000-0003-1549-232X</orcidid></search><sort><creationdate>2024</creationdate><title>An Enhanced Frequency Analysis and Machine Learning Based Approach for Open Circuit Failures in PV Systems</title><author>Lavador-Osorio, Mauricio ; Zuniga-Reyes, Marco-Antonio ; Alvarez-Alvarado, Jose M. ; Sevilla-Camacho, Perla-Yazmin ; Garduno-Aparicio, Mariano ; Rodriguez-Resendiz, Juvenal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-ffc9aaeeb09d5d1db3cd5b95d0e64f3c5fb683cc6615722f409575b61075caa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circuit faults</topic><topic>Current measurement</topic><topic>discrete Fourier transform</topic><topic>Discrete Fourier transforms</topic><topic>dynamic impedance in photovoltaic systems</topic><topic>Electrical fault detection</topic><topic>Fault detection</topic><topic>Fault detection in photovoltaic systems</topic><topic>Heuristic algorithms</topic><topic>Inverters</topic><topic>KNN algorithm</topic><topic>Machine learning</topic><topic>Nearest neighbor methods</topic><topic>open circuit fault detection</topic><topic>Photovoltaic systems</topic><topic>Solar power generation</topic><topic>Temperature measurement</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lavador-Osorio, Mauricio</creatorcontrib><creatorcontrib>Zuniga-Reyes, Marco-Antonio</creatorcontrib><creatorcontrib>Alvarez-Alvarado, Jose M.</creatorcontrib><creatorcontrib>Sevilla-Camacho, Perla-Yazmin</creatorcontrib><creatorcontrib>Garduno-Aparicio, Mariano</creatorcontrib><creatorcontrib>Rodriguez-Resendiz, Juvenal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavador-Osorio, Mauricio</au><au>Zuniga-Reyes, Marco-Antonio</au><au>Alvarez-Alvarado, Jose M.</au><au>Sevilla-Camacho, Perla-Yazmin</au><au>Garduno-Aparicio, Mariano</au><au>Rodriguez-Resendiz, Juvenal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Enhanced Frequency Analysis and Machine Learning Based Approach for Open Circuit Failures in PV Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>96342</spage><epage>96357</epage><pages>96342-96357</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Over the last decades, the accelerated implementation of photovoltaic systems (PVS) has led to the creation of open circuit fault detection systems based on measurements made in completed facilities, growing by making the volume of data to be analyzed with each new installation, improving fault detection and location systems with various methods. In this article, an electronic adaptive device was developed that operates under a method based on the spectral analysis of signals using the Discrete Fourier Transform (DFT) and a classifier based on the k-Nearest Neighbor (k-NN) machine learning algorithm (ML) for the detection of Open Circuit Faults (OCF). The contribution of this work is that the entire photovoltaic array operated in conditions of radiance less than &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;10~\frac {W}{m^{2}} &lt;/tex-math&gt;&lt;/inline-formula&gt; overnight with a red LED pulsed light applied on the photovoltaic array module furthest from the inverter. Under these operating conditions, the presence of an open circuit fault alters the variability in the impedances of the photovoltaic array under different fault locations in the systems compared to healthy systems without an open circuit fault, revealing that the predictability of the methodology shows values from 90% to 93% as the size of the photovoltaic system increases, concluding the effectiveness of the procedure.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3425486</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1304-6791</orcidid><orcidid>https://orcid.org/0000-0002-7737-2115</orcidid><orcidid>https://orcid.org/0000-0002-9702-1929</orcidid><orcidid>https://orcid.org/0000-0001-8598-5600</orcidid><orcidid>https://orcid.org/0009-0006-8144-1458</orcidid><orcidid>https://orcid.org/0000-0003-1549-232X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.96342-96357
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e1518953132440d99b45f1d4785de8f2
source IEEE Xplore Open Access Journals
subjects Circuit faults
Current measurement
discrete Fourier transform
Discrete Fourier transforms
dynamic impedance in photovoltaic systems
Electrical fault detection
Fault detection
Fault detection in photovoltaic systems
Heuristic algorithms
Inverters
KNN algorithm
Machine learning
Nearest neighbor methods
open circuit fault detection
Photovoltaic systems
Solar power generation
Temperature measurement
Voltage measurement
title An Enhanced Frequency Analysis and Machine Learning Based Approach for Open Circuit Failures in PV Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Enhanced%20Frequency%20Analysis%20and%20Machine%20Learning%20Based%20Approach%20for%20Open%20Circuit%20Failures%20in%20PV%20Systems&rft.jtitle=IEEE%20access&rft.au=Lavador-Osorio,%20Mauricio&rft.date=2024&rft.volume=12&rft.spage=96342&rft.epage=96357&rft.pages=96342-96357&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3425486&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_e1518953132440d99b45f1d4785de8f2%3C/doaj_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-ffc9aaeeb09d5d1db3cd5b95d0e64f3c5fb683cc6615722f409575b61075caa53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10589626&rfr_iscdi=true