Loading…
An Enhanced Frequency Analysis and Machine Learning Based Approach for Open Circuit Failures in PV Systems
Over the last decades, the accelerated implementation of photovoltaic systems (PVS) has led to the creation of open circuit fault detection systems based on measurements made in completed facilities, growing by making the volume of data to be analyzed with each new installation, improving fault dete...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.96342-96357 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c261t-ffc9aaeeb09d5d1db3cd5b95d0e64f3c5fb683cc6615722f409575b61075caa53 |
container_end_page | 96357 |
container_issue | |
container_start_page | 96342 |
container_title | IEEE access |
container_volume | 12 |
creator | Lavador-Osorio, Mauricio Zuniga-Reyes, Marco-Antonio Alvarez-Alvarado, Jose M. Sevilla-Camacho, Perla-Yazmin Garduno-Aparicio, Mariano Rodriguez-Resendiz, Juvenal |
description | Over the last decades, the accelerated implementation of photovoltaic systems (PVS) has led to the creation of open circuit fault detection systems based on measurements made in completed facilities, growing by making the volume of data to be analyzed with each new installation, improving fault detection and location systems with various methods. In this article, an electronic adaptive device was developed that operates under a method based on the spectral analysis of signals using the Discrete Fourier Transform (DFT) and a classifier based on the k-Nearest Neighbor (k-NN) machine learning algorithm (ML) for the detection of Open Circuit Faults (OCF). The contribution of this work is that the entire photovoltaic array operated in conditions of radiance less than 10~\frac {W}{m^{2}} overnight with a red LED pulsed light applied on the photovoltaic array module furthest from the inverter. Under these operating conditions, the presence of an open circuit fault alters the variability in the impedances of the photovoltaic array under different fault locations in the systems compared to healthy systems without an open circuit fault, revealing that the predictability of the methodology shows values from 90% to 93% as the size of the photovoltaic system increases, concluding the effectiveness of the procedure. |
doi_str_mv | 10.1109/ACCESS.2024.3425486 |
format | article |
fullrecord | <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e1518953132440d99b45f1d4785de8f2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10589626</ieee_id><doaj_id>oai_doaj_org_article_e1518953132440d99b45f1d4785de8f2</doaj_id><sourcerecordid>oai_doaj_org_article_e1518953132440d99b45f1d4785de8f2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-ffc9aaeeb09d5d1db3cd5b95d0e64f3c5fb683cc6615722f409575b61075caa53</originalsourceid><addsrcrecordid>eNpNkN1OAjEQhTdGEwn6BHrRFwD7z_Zy3YCSYDBBvW267VRLli62cMHbuwoxzM1Mzsw5yXxFcUfwmBCsHqq6nq5WY4opHzNOBS_lRTGgRKoRE0xens3XxW3Oa9xX2UtiMijWVUTT-GWiBYdmCb73EO0BVdG0hxwyMtGhF2O_QgS0AJNiiJ_o0eT-utpuU9evkO8SWm4hojokuw87NDOh3SfIKET0-oFWh7yDTb4prrxpM9ye-rB4n03f6ufRYvk0r6vFyFJJdiPvrTIGoMHKCUdcw6wTjRIOg-SeWeEbWTJrpSRiQqnnuH9ENJLgibDGCDYs5sdc15m13qawMemgOxP0n9ClT23SLtgWNBBBSiUYYZRz7JRquPDE8UkpHJSe9lnsmGVTl3MC_59HsP6lr4_09S99faLfu-6PrgAAZw5RKkkl-wGYQIDI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Enhanced Frequency Analysis and Machine Learning Based Approach for Open Circuit Failures in PV Systems</title><source>IEEE Xplore Open Access Journals</source><creator>Lavador-Osorio, Mauricio ; Zuniga-Reyes, Marco-Antonio ; Alvarez-Alvarado, Jose M. ; Sevilla-Camacho, Perla-Yazmin ; Garduno-Aparicio, Mariano ; Rodriguez-Resendiz, Juvenal</creator><creatorcontrib>Lavador-Osorio, Mauricio ; Zuniga-Reyes, Marco-Antonio ; Alvarez-Alvarado, Jose M. ; Sevilla-Camacho, Perla-Yazmin ; Garduno-Aparicio, Mariano ; Rodriguez-Resendiz, Juvenal</creatorcontrib><description>Over the last decades, the accelerated implementation of photovoltaic systems (PVS) has led to the creation of open circuit fault detection systems based on measurements made in completed facilities, growing by making the volume of data to be analyzed with each new installation, improving fault detection and location systems with various methods. In this article, an electronic adaptive device was developed that operates under a method based on the spectral analysis of signals using the Discrete Fourier Transform (DFT) and a classifier based on the k-Nearest Neighbor (k-NN) machine learning algorithm (ML) for the detection of Open Circuit Faults (OCF). The contribution of this work is that the entire photovoltaic array operated in conditions of radiance less than <inline-formula> <tex-math notation="LaTeX">10~\frac {W}{m^{2}} </tex-math></inline-formula> overnight with a red LED pulsed light applied on the photovoltaic array module furthest from the inverter. Under these operating conditions, the presence of an open circuit fault alters the variability in the impedances of the photovoltaic array under different fault locations in the systems compared to healthy systems without an open circuit fault, revealing that the predictability of the methodology shows values from 90% to 93% as the size of the photovoltaic system increases, concluding the effectiveness of the procedure.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3425486</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuit faults ; Current measurement ; discrete Fourier transform ; Discrete Fourier transforms ; dynamic impedance in photovoltaic systems ; Electrical fault detection ; Fault detection ; Fault detection in photovoltaic systems ; Heuristic algorithms ; Inverters ; KNN algorithm ; Machine learning ; Nearest neighbor methods ; open circuit fault detection ; Photovoltaic systems ; Solar power generation ; Temperature measurement ; Voltage measurement</subject><ispartof>IEEE access, 2024, Vol.12, p.96342-96357</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-ffc9aaeeb09d5d1db3cd5b95d0e64f3c5fb683cc6615722f409575b61075caa53</cites><orcidid>0000-0002-1304-6791 ; 0000-0002-7737-2115 ; 0000-0002-9702-1929 ; 0000-0001-8598-5600 ; 0009-0006-8144-1458 ; 0000-0003-1549-232X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10589626$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Lavador-Osorio, Mauricio</creatorcontrib><creatorcontrib>Zuniga-Reyes, Marco-Antonio</creatorcontrib><creatorcontrib>Alvarez-Alvarado, Jose M.</creatorcontrib><creatorcontrib>Sevilla-Camacho, Perla-Yazmin</creatorcontrib><creatorcontrib>Garduno-Aparicio, Mariano</creatorcontrib><creatorcontrib>Rodriguez-Resendiz, Juvenal</creatorcontrib><title>An Enhanced Frequency Analysis and Machine Learning Based Approach for Open Circuit Failures in PV Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>Over the last decades, the accelerated implementation of photovoltaic systems (PVS) has led to the creation of open circuit fault detection systems based on measurements made in completed facilities, growing by making the volume of data to be analyzed with each new installation, improving fault detection and location systems with various methods. In this article, an electronic adaptive device was developed that operates under a method based on the spectral analysis of signals using the Discrete Fourier Transform (DFT) and a classifier based on the k-Nearest Neighbor (k-NN) machine learning algorithm (ML) for the detection of Open Circuit Faults (OCF). The contribution of this work is that the entire photovoltaic array operated in conditions of radiance less than <inline-formula> <tex-math notation="LaTeX">10~\frac {W}{m^{2}} </tex-math></inline-formula> overnight with a red LED pulsed light applied on the photovoltaic array module furthest from the inverter. Under these operating conditions, the presence of an open circuit fault alters the variability in the impedances of the photovoltaic array under different fault locations in the systems compared to healthy systems without an open circuit fault, revealing that the predictability of the methodology shows values from 90% to 93% as the size of the photovoltaic system increases, concluding the effectiveness of the procedure.</description><subject>Circuit faults</subject><subject>Current measurement</subject><subject>discrete Fourier transform</subject><subject>Discrete Fourier transforms</subject><subject>dynamic impedance in photovoltaic systems</subject><subject>Electrical fault detection</subject><subject>Fault detection</subject><subject>Fault detection in photovoltaic systems</subject><subject>Heuristic algorithms</subject><subject>Inverters</subject><subject>KNN algorithm</subject><subject>Machine learning</subject><subject>Nearest neighbor methods</subject><subject>open circuit fault detection</subject><subject>Photovoltaic systems</subject><subject>Solar power generation</subject><subject>Temperature measurement</subject><subject>Voltage measurement</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkN1OAjEQhTdGEwn6BHrRFwD7z_Zy3YCSYDBBvW267VRLli62cMHbuwoxzM1Mzsw5yXxFcUfwmBCsHqq6nq5WY4opHzNOBS_lRTGgRKoRE0xens3XxW3Oa9xX2UtiMijWVUTT-GWiBYdmCb73EO0BVdG0hxwyMtGhF2O_QgS0AJNiiJ_o0eT-utpuU9evkO8SWm4hojokuw87NDOh3SfIKET0-oFWh7yDTb4prrxpM9ye-rB4n03f6ufRYvk0r6vFyFJJdiPvrTIGoMHKCUdcw6wTjRIOg-SeWeEbWTJrpSRiQqnnuH9ENJLgibDGCDYs5sdc15m13qawMemgOxP0n9ClT23SLtgWNBBBSiUYYZRz7JRquPDE8UkpHJSe9lnsmGVTl3MC_59HsP6lr4_09S99faLfu-6PrgAAZw5RKkkl-wGYQIDI</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lavador-Osorio, Mauricio</creator><creator>Zuniga-Reyes, Marco-Antonio</creator><creator>Alvarez-Alvarado, Jose M.</creator><creator>Sevilla-Camacho, Perla-Yazmin</creator><creator>Garduno-Aparicio, Mariano</creator><creator>Rodriguez-Resendiz, Juvenal</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1304-6791</orcidid><orcidid>https://orcid.org/0000-0002-7737-2115</orcidid><orcidid>https://orcid.org/0000-0002-9702-1929</orcidid><orcidid>https://orcid.org/0000-0001-8598-5600</orcidid><orcidid>https://orcid.org/0009-0006-8144-1458</orcidid><orcidid>https://orcid.org/0000-0003-1549-232X</orcidid></search><sort><creationdate>2024</creationdate><title>An Enhanced Frequency Analysis and Machine Learning Based Approach for Open Circuit Failures in PV Systems</title><author>Lavador-Osorio, Mauricio ; Zuniga-Reyes, Marco-Antonio ; Alvarez-Alvarado, Jose M. ; Sevilla-Camacho, Perla-Yazmin ; Garduno-Aparicio, Mariano ; Rodriguez-Resendiz, Juvenal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-ffc9aaeeb09d5d1db3cd5b95d0e64f3c5fb683cc6615722f409575b61075caa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circuit faults</topic><topic>Current measurement</topic><topic>discrete Fourier transform</topic><topic>Discrete Fourier transforms</topic><topic>dynamic impedance in photovoltaic systems</topic><topic>Electrical fault detection</topic><topic>Fault detection</topic><topic>Fault detection in photovoltaic systems</topic><topic>Heuristic algorithms</topic><topic>Inverters</topic><topic>KNN algorithm</topic><topic>Machine learning</topic><topic>Nearest neighbor methods</topic><topic>open circuit fault detection</topic><topic>Photovoltaic systems</topic><topic>Solar power generation</topic><topic>Temperature measurement</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lavador-Osorio, Mauricio</creatorcontrib><creatorcontrib>Zuniga-Reyes, Marco-Antonio</creatorcontrib><creatorcontrib>Alvarez-Alvarado, Jose M.</creatorcontrib><creatorcontrib>Sevilla-Camacho, Perla-Yazmin</creatorcontrib><creatorcontrib>Garduno-Aparicio, Mariano</creatorcontrib><creatorcontrib>Rodriguez-Resendiz, Juvenal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavador-Osorio, Mauricio</au><au>Zuniga-Reyes, Marco-Antonio</au><au>Alvarez-Alvarado, Jose M.</au><au>Sevilla-Camacho, Perla-Yazmin</au><au>Garduno-Aparicio, Mariano</au><au>Rodriguez-Resendiz, Juvenal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Enhanced Frequency Analysis and Machine Learning Based Approach for Open Circuit Failures in PV Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>96342</spage><epage>96357</epage><pages>96342-96357</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Over the last decades, the accelerated implementation of photovoltaic systems (PVS) has led to the creation of open circuit fault detection systems based on measurements made in completed facilities, growing by making the volume of data to be analyzed with each new installation, improving fault detection and location systems with various methods. In this article, an electronic adaptive device was developed that operates under a method based on the spectral analysis of signals using the Discrete Fourier Transform (DFT) and a classifier based on the k-Nearest Neighbor (k-NN) machine learning algorithm (ML) for the detection of Open Circuit Faults (OCF). The contribution of this work is that the entire photovoltaic array operated in conditions of radiance less than <inline-formula> <tex-math notation="LaTeX">10~\frac {W}{m^{2}} </tex-math></inline-formula> overnight with a red LED pulsed light applied on the photovoltaic array module furthest from the inverter. Under these operating conditions, the presence of an open circuit fault alters the variability in the impedances of the photovoltaic array under different fault locations in the systems compared to healthy systems without an open circuit fault, revealing that the predictability of the methodology shows values from 90% to 93% as the size of the photovoltaic system increases, concluding the effectiveness of the procedure.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3425486</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1304-6791</orcidid><orcidid>https://orcid.org/0000-0002-7737-2115</orcidid><orcidid>https://orcid.org/0000-0002-9702-1929</orcidid><orcidid>https://orcid.org/0000-0001-8598-5600</orcidid><orcidid>https://orcid.org/0009-0006-8144-1458</orcidid><orcidid>https://orcid.org/0000-0003-1549-232X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.96342-96357 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e1518953132440d99b45f1d4785de8f2 |
source | IEEE Xplore Open Access Journals |
subjects | Circuit faults Current measurement discrete Fourier transform Discrete Fourier transforms dynamic impedance in photovoltaic systems Electrical fault detection Fault detection Fault detection in photovoltaic systems Heuristic algorithms Inverters KNN algorithm Machine learning Nearest neighbor methods open circuit fault detection Photovoltaic systems Solar power generation Temperature measurement Voltage measurement |
title | An Enhanced Frequency Analysis and Machine Learning Based Approach for Open Circuit Failures in PV Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Enhanced%20Frequency%20Analysis%20and%20Machine%20Learning%20Based%20Approach%20for%20Open%20Circuit%20Failures%20in%20PV%20Systems&rft.jtitle=IEEE%20access&rft.au=Lavador-Osorio,%20Mauricio&rft.date=2024&rft.volume=12&rft.spage=96342&rft.epage=96357&rft.pages=96342-96357&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3425486&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_e1518953132440d99b45f1d4785de8f2%3C/doaj_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-ffc9aaeeb09d5d1db3cd5b95d0e64f3c5fb683cc6615722f409575b61075caa53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10589626&rfr_iscdi=true |