Loading…

Wide-Bandgap Halide Perovskites for Indoor Photovoltaics

Indoor photovoltaics (IPVs) are receiving great research attention recently due to their projected application in the huge technology field of Internet of Things (IoT). Among the various existing photovoltaic technologies such as silicon, Cadmium Telluride (CdTe), Copper Indium Gallium Selenide (CIG...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in chemistry 2021-03, Vol.9, p.632021-632021
Main Authors: Jagadamma, Lethy Krishnan, Wang, Shaoyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-2fde09f55555a2ce153716592fe9656928eb986d2b117157240d2a98d1c203bb3
cites cdi_FETCH-LOGICAL-c465t-2fde09f55555a2ce153716592fe9656928eb986d2b117157240d2a98d1c203bb3
container_end_page 632021
container_issue
container_start_page 632021
container_title Frontiers in chemistry
container_volume 9
creator Jagadamma, Lethy Krishnan
Wang, Shaoyang
description Indoor photovoltaics (IPVs) are receiving great research attention recently due to their projected application in the huge technology field of Internet of Things (IoT). Among the various existing photovoltaic technologies such as silicon, Cadmium Telluride (CdTe), Copper Indium Gallium Selenide (CIGS), organic photovoltaics, and halide perovskites, the latter are identified as the most promising for indoor light harvesting. This suitability is mainly due to its composition tuning adaptability to engineer the bandgap to match the indoor light spectrum and exceptional optoelectronic properties. Here, in this review, we are summarizing the state-of-the-art research efforts on halide perovskite-based indoor photovoltaics, the effect of composition tuning, and the selection of various functional layer and device architecture onto their power conversion efficiency. We also highlight some of the challenges to be addressed before these halide perovskite IPVs are commercialized.
doi_str_mv 10.3389/fchem.2021.632021
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e175662e611547589ca6596eff43b77a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e175662e611547589ca6596eff43b77a</doaj_id><sourcerecordid>2511897867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-2fde09f55555a2ce153716592fe9656928eb986d2b117157240d2a98d1c203bb3</originalsourceid><addsrcrecordid>eNpVkU1vEzEQhi0EolXpD-CCcuSywTNef12QoAIaqRI9gDhaXnucbNmsg72JxL9n05Sq9eX1x8wzlh7G3gJfCmHshxQ2tF0iR1gqcYwX7BzRqgZVq14-2Z-xy1rvOOeAIFrkr9nZDGixFfycmV99pOazH-Pa7xbXfpiPi1sq-VB_9xPVRcplsRpjnuN2k6d8yMPk-1DfsFfJD5UuH_KC_fz65cfVdXPz_dvq6tNNE1olpwZTJG6TPC6PgUAKDUpaTGSVVBYNddaoiB2ABqmx5RG9NRECctF14oKtTtyY_Z3blX7ry1-Xfe_uL3JZO1-mPgzkCLRUCkkByFZLY4OfJylKqRWd1n5mfTyxdvtuSzHQOBU_PIM-fxn7jVvngzNcoLE4A94_AEr-s6c6uW1fAw2DHynvq0MJYKw2Ss-lcCoNJddaKD2OAe6OAt29QHc0504C5553T__32PFfl_gHIW2V1g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511897867</pqid></control><display><type>article</type><title>Wide-Bandgap Halide Perovskites for Indoor Photovoltaics</title><source>PubMed Central</source><creator>Jagadamma, Lethy Krishnan ; Wang, Shaoyang</creator><creatorcontrib>Jagadamma, Lethy Krishnan ; Wang, Shaoyang</creatorcontrib><description>Indoor photovoltaics (IPVs) are receiving great research attention recently due to their projected application in the huge technology field of Internet of Things (IoT). Among the various existing photovoltaic technologies such as silicon, Cadmium Telluride (CdTe), Copper Indium Gallium Selenide (CIGS), organic photovoltaics, and halide perovskites, the latter are identified as the most promising for indoor light harvesting. This suitability is mainly due to its composition tuning adaptability to engineer the bandgap to match the indoor light spectrum and exceptional optoelectronic properties. Here, in this review, we are summarizing the state-of-the-art research efforts on halide perovskite-based indoor photovoltaics, the effect of composition tuning, and the selection of various functional layer and device architecture onto their power conversion efficiency. We also highlight some of the challenges to be addressed before these halide perovskite IPVs are commercialized.</description><identifier>ISSN: 2296-2646</identifier><identifier>EISSN: 2296-2646</identifier><identifier>DOI: 10.3389/fchem.2021.632021</identifier><identifier>PMID: 33842430</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>CH3NH3PbI3 ; Chemistry ; composition tuning ; internet of things ; power conversion efficiency ; triple anion ; triple cation</subject><ispartof>Frontiers in chemistry, 2021-03, Vol.9, p.632021-632021</ispartof><rights>Copyright © 2021 Jagadamma and Wang.</rights><rights>Copyright © 2021 Jagadamma and Wang. 2021 Jagadamma and Wang</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-2fde09f55555a2ce153716592fe9656928eb986d2b117157240d2a98d1c203bb3</citedby><cites>FETCH-LOGICAL-c465t-2fde09f55555a2ce153716592fe9656928eb986d2b117157240d2a98d1c203bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032892/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032892/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33842430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jagadamma, Lethy Krishnan</creatorcontrib><creatorcontrib>Wang, Shaoyang</creatorcontrib><title>Wide-Bandgap Halide Perovskites for Indoor Photovoltaics</title><title>Frontiers in chemistry</title><addtitle>Front Chem</addtitle><description>Indoor photovoltaics (IPVs) are receiving great research attention recently due to their projected application in the huge technology field of Internet of Things (IoT). Among the various existing photovoltaic technologies such as silicon, Cadmium Telluride (CdTe), Copper Indium Gallium Selenide (CIGS), organic photovoltaics, and halide perovskites, the latter are identified as the most promising for indoor light harvesting. This suitability is mainly due to its composition tuning adaptability to engineer the bandgap to match the indoor light spectrum and exceptional optoelectronic properties. Here, in this review, we are summarizing the state-of-the-art research efforts on halide perovskite-based indoor photovoltaics, the effect of composition tuning, and the selection of various functional layer and device architecture onto their power conversion efficiency. We also highlight some of the challenges to be addressed before these halide perovskite IPVs are commercialized.</description><subject>CH3NH3PbI3</subject><subject>Chemistry</subject><subject>composition tuning</subject><subject>internet of things</subject><subject>power conversion efficiency</subject><subject>triple anion</subject><subject>triple cation</subject><issn>2296-2646</issn><issn>2296-2646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1vEzEQhi0EolXpD-CCcuSywTNef12QoAIaqRI9gDhaXnucbNmsg72JxL9n05Sq9eX1x8wzlh7G3gJfCmHshxQ2tF0iR1gqcYwX7BzRqgZVq14-2Z-xy1rvOOeAIFrkr9nZDGixFfycmV99pOazH-Pa7xbXfpiPi1sq-VB_9xPVRcplsRpjnuN2k6d8yMPk-1DfsFfJD5UuH_KC_fz65cfVdXPz_dvq6tNNE1olpwZTJG6TPC6PgUAKDUpaTGSVVBYNddaoiB2ABqmx5RG9NRECctF14oKtTtyY_Z3blX7ry1-Xfe_uL3JZO1-mPgzkCLRUCkkByFZLY4OfJylKqRWd1n5mfTyxdvtuSzHQOBU_PIM-fxn7jVvngzNcoLE4A94_AEr-s6c6uW1fAw2DHynvq0MJYKw2Ss-lcCoNJddaKD2OAe6OAt29QHc0504C5553T__32PFfl_gHIW2V1g</recordid><startdate>20210326</startdate><enddate>20210326</enddate><creator>Jagadamma, Lethy Krishnan</creator><creator>Wang, Shaoyang</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210326</creationdate><title>Wide-Bandgap Halide Perovskites for Indoor Photovoltaics</title><author>Jagadamma, Lethy Krishnan ; Wang, Shaoyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-2fde09f55555a2ce153716592fe9656928eb986d2b117157240d2a98d1c203bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CH3NH3PbI3</topic><topic>Chemistry</topic><topic>composition tuning</topic><topic>internet of things</topic><topic>power conversion efficiency</topic><topic>triple anion</topic><topic>triple cation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jagadamma, Lethy Krishnan</creatorcontrib><creatorcontrib>Wang, Shaoyang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jagadamma, Lethy Krishnan</au><au>Wang, Shaoyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wide-Bandgap Halide Perovskites for Indoor Photovoltaics</atitle><jtitle>Frontiers in chemistry</jtitle><addtitle>Front Chem</addtitle><date>2021-03-26</date><risdate>2021</risdate><volume>9</volume><spage>632021</spage><epage>632021</epage><pages>632021-632021</pages><issn>2296-2646</issn><eissn>2296-2646</eissn><abstract>Indoor photovoltaics (IPVs) are receiving great research attention recently due to their projected application in the huge technology field of Internet of Things (IoT). Among the various existing photovoltaic technologies such as silicon, Cadmium Telluride (CdTe), Copper Indium Gallium Selenide (CIGS), organic photovoltaics, and halide perovskites, the latter are identified as the most promising for indoor light harvesting. This suitability is mainly due to its composition tuning adaptability to engineer the bandgap to match the indoor light spectrum and exceptional optoelectronic properties. Here, in this review, we are summarizing the state-of-the-art research efforts on halide perovskite-based indoor photovoltaics, the effect of composition tuning, and the selection of various functional layer and device architecture onto their power conversion efficiency. We also highlight some of the challenges to be addressed before these halide perovskite IPVs are commercialized.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>33842430</pmid><doi>10.3389/fchem.2021.632021</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-2646
ispartof Frontiers in chemistry, 2021-03, Vol.9, p.632021-632021
issn 2296-2646
2296-2646
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e175662e611547589ca6596eff43b77a
source PubMed Central
subjects CH3NH3PbI3
Chemistry
composition tuning
internet of things
power conversion efficiency
triple anion
triple cation
title Wide-Bandgap Halide Perovskites for Indoor Photovoltaics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wide-Bandgap%20Halide%20Perovskites%20for%20Indoor%20Photovoltaics&rft.jtitle=Frontiers%20in%20chemistry&rft.au=Jagadamma,%20Lethy%20Krishnan&rft.date=2021-03-26&rft.volume=9&rft.spage=632021&rft.epage=632021&rft.pages=632021-632021&rft.issn=2296-2646&rft.eissn=2296-2646&rft_id=info:doi/10.3389/fchem.2021.632021&rft_dat=%3Cproquest_doaj_%3E2511897867%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-2fde09f55555a2ce153716592fe9656928eb986d2b117157240d2a98d1c203bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2511897867&rft_id=info:pmid/33842430&rfr_iscdi=true