Loading…
Wide-Bandgap Halide Perovskites for Indoor Photovoltaics
Indoor photovoltaics (IPVs) are receiving great research attention recently due to their projected application in the huge technology field of Internet of Things (IoT). Among the various existing photovoltaic technologies such as silicon, Cadmium Telluride (CdTe), Copper Indium Gallium Selenide (CIG...
Saved in:
Published in: | Frontiers in chemistry 2021-03, Vol.9, p.632021-632021 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-2fde09f55555a2ce153716592fe9656928eb986d2b117157240d2a98d1c203bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-2fde09f55555a2ce153716592fe9656928eb986d2b117157240d2a98d1c203bb3 |
container_end_page | 632021 |
container_issue | |
container_start_page | 632021 |
container_title | Frontiers in chemistry |
container_volume | 9 |
creator | Jagadamma, Lethy Krishnan Wang, Shaoyang |
description | Indoor photovoltaics (IPVs) are receiving great research attention recently due to their projected application in the huge technology field of Internet of Things (IoT). Among the various existing photovoltaic technologies such as silicon, Cadmium Telluride (CdTe), Copper Indium Gallium Selenide (CIGS), organic photovoltaics, and halide perovskites, the latter are identified as the most promising for indoor light harvesting. This suitability is mainly due to its composition tuning adaptability to engineer the bandgap to match the indoor light spectrum and exceptional optoelectronic properties. Here, in this review, we are summarizing the state-of-the-art research efforts on halide perovskite-based indoor photovoltaics, the effect of composition tuning, and the selection of various functional layer and device architecture onto their power conversion efficiency. We also highlight some of the challenges to be addressed before these halide perovskite IPVs are commercialized. |
doi_str_mv | 10.3389/fchem.2021.632021 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e175662e611547589ca6596eff43b77a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e175662e611547589ca6596eff43b77a</doaj_id><sourcerecordid>2511897867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-2fde09f55555a2ce153716592fe9656928eb986d2b117157240d2a98d1c203bb3</originalsourceid><addsrcrecordid>eNpVkU1vEzEQhi0EolXpD-CCcuSywTNef12QoAIaqRI9gDhaXnucbNmsg72JxL9n05Sq9eX1x8wzlh7G3gJfCmHshxQ2tF0iR1gqcYwX7BzRqgZVq14-2Z-xy1rvOOeAIFrkr9nZDGixFfycmV99pOazH-Pa7xbXfpiPi1sq-VB_9xPVRcplsRpjnuN2k6d8yMPk-1DfsFfJD5UuH_KC_fz65cfVdXPz_dvq6tNNE1olpwZTJG6TPC6PgUAKDUpaTGSVVBYNddaoiB2ABqmx5RG9NRECctF14oKtTtyY_Z3blX7ry1-Xfe_uL3JZO1-mPgzkCLRUCkkByFZLY4OfJylKqRWd1n5mfTyxdvtuSzHQOBU_PIM-fxn7jVvngzNcoLE4A94_AEr-s6c6uW1fAw2DHynvq0MJYKw2Ss-lcCoNJddaKD2OAe6OAt29QHc0504C5553T__32PFfl_gHIW2V1g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511897867</pqid></control><display><type>article</type><title>Wide-Bandgap Halide Perovskites for Indoor Photovoltaics</title><source>PubMed Central</source><creator>Jagadamma, Lethy Krishnan ; Wang, Shaoyang</creator><creatorcontrib>Jagadamma, Lethy Krishnan ; Wang, Shaoyang</creatorcontrib><description>Indoor photovoltaics (IPVs) are receiving great research attention recently due to their projected application in the huge technology field of Internet of Things (IoT). Among the various existing photovoltaic technologies such as silicon, Cadmium Telluride (CdTe), Copper Indium Gallium Selenide (CIGS), organic photovoltaics, and halide perovskites, the latter are identified as the most promising for indoor light harvesting. This suitability is mainly due to its composition tuning adaptability to engineer the bandgap to match the indoor light spectrum and exceptional optoelectronic properties. Here, in this review, we are summarizing the state-of-the-art research efforts on halide perovskite-based indoor photovoltaics, the effect of composition tuning, and the selection of various functional layer and device architecture onto their power conversion efficiency. We also highlight some of the challenges to be addressed before these halide perovskite IPVs are commercialized.</description><identifier>ISSN: 2296-2646</identifier><identifier>EISSN: 2296-2646</identifier><identifier>DOI: 10.3389/fchem.2021.632021</identifier><identifier>PMID: 33842430</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>CH3NH3PbI3 ; Chemistry ; composition tuning ; internet of things ; power conversion efficiency ; triple anion ; triple cation</subject><ispartof>Frontiers in chemistry, 2021-03, Vol.9, p.632021-632021</ispartof><rights>Copyright © 2021 Jagadamma and Wang.</rights><rights>Copyright © 2021 Jagadamma and Wang. 2021 Jagadamma and Wang</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-2fde09f55555a2ce153716592fe9656928eb986d2b117157240d2a98d1c203bb3</citedby><cites>FETCH-LOGICAL-c465t-2fde09f55555a2ce153716592fe9656928eb986d2b117157240d2a98d1c203bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032892/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032892/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33842430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jagadamma, Lethy Krishnan</creatorcontrib><creatorcontrib>Wang, Shaoyang</creatorcontrib><title>Wide-Bandgap Halide Perovskites for Indoor Photovoltaics</title><title>Frontiers in chemistry</title><addtitle>Front Chem</addtitle><description>Indoor photovoltaics (IPVs) are receiving great research attention recently due to their projected application in the huge technology field of Internet of Things (IoT). Among the various existing photovoltaic technologies such as silicon, Cadmium Telluride (CdTe), Copper Indium Gallium Selenide (CIGS), organic photovoltaics, and halide perovskites, the latter are identified as the most promising for indoor light harvesting. This suitability is mainly due to its composition tuning adaptability to engineer the bandgap to match the indoor light spectrum and exceptional optoelectronic properties. Here, in this review, we are summarizing the state-of-the-art research efforts on halide perovskite-based indoor photovoltaics, the effect of composition tuning, and the selection of various functional layer and device architecture onto their power conversion efficiency. We also highlight some of the challenges to be addressed before these halide perovskite IPVs are commercialized.</description><subject>CH3NH3PbI3</subject><subject>Chemistry</subject><subject>composition tuning</subject><subject>internet of things</subject><subject>power conversion efficiency</subject><subject>triple anion</subject><subject>triple cation</subject><issn>2296-2646</issn><issn>2296-2646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1vEzEQhi0EolXpD-CCcuSywTNef12QoAIaqRI9gDhaXnucbNmsg72JxL9n05Sq9eX1x8wzlh7G3gJfCmHshxQ2tF0iR1gqcYwX7BzRqgZVq14-2Z-xy1rvOOeAIFrkr9nZDGixFfycmV99pOazH-Pa7xbXfpiPi1sq-VB_9xPVRcplsRpjnuN2k6d8yMPk-1DfsFfJD5UuH_KC_fz65cfVdXPz_dvq6tNNE1olpwZTJG6TPC6PgUAKDUpaTGSVVBYNddaoiB2ABqmx5RG9NRECctF14oKtTtyY_Z3blX7ry1-Xfe_uL3JZO1-mPgzkCLRUCkkByFZLY4OfJylKqRWd1n5mfTyxdvtuSzHQOBU_PIM-fxn7jVvngzNcoLE4A94_AEr-s6c6uW1fAw2DHynvq0MJYKw2Ss-lcCoNJddaKD2OAe6OAt29QHc0504C5553T__32PFfl_gHIW2V1g</recordid><startdate>20210326</startdate><enddate>20210326</enddate><creator>Jagadamma, Lethy Krishnan</creator><creator>Wang, Shaoyang</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210326</creationdate><title>Wide-Bandgap Halide Perovskites for Indoor Photovoltaics</title><author>Jagadamma, Lethy Krishnan ; Wang, Shaoyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-2fde09f55555a2ce153716592fe9656928eb986d2b117157240d2a98d1c203bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CH3NH3PbI3</topic><topic>Chemistry</topic><topic>composition tuning</topic><topic>internet of things</topic><topic>power conversion efficiency</topic><topic>triple anion</topic><topic>triple cation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jagadamma, Lethy Krishnan</creatorcontrib><creatorcontrib>Wang, Shaoyang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jagadamma, Lethy Krishnan</au><au>Wang, Shaoyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wide-Bandgap Halide Perovskites for Indoor Photovoltaics</atitle><jtitle>Frontiers in chemistry</jtitle><addtitle>Front Chem</addtitle><date>2021-03-26</date><risdate>2021</risdate><volume>9</volume><spage>632021</spage><epage>632021</epage><pages>632021-632021</pages><issn>2296-2646</issn><eissn>2296-2646</eissn><abstract>Indoor photovoltaics (IPVs) are receiving great research attention recently due to their projected application in the huge technology field of Internet of Things (IoT). Among the various existing photovoltaic technologies such as silicon, Cadmium Telluride (CdTe), Copper Indium Gallium Selenide (CIGS), organic photovoltaics, and halide perovskites, the latter are identified as the most promising for indoor light harvesting. This suitability is mainly due to its composition tuning adaptability to engineer the bandgap to match the indoor light spectrum and exceptional optoelectronic properties. Here, in this review, we are summarizing the state-of-the-art research efforts on halide perovskite-based indoor photovoltaics, the effect of composition tuning, and the selection of various functional layer and device architecture onto their power conversion efficiency. We also highlight some of the challenges to be addressed before these halide perovskite IPVs are commercialized.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>33842430</pmid><doi>10.3389/fchem.2021.632021</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2296-2646 |
ispartof | Frontiers in chemistry, 2021-03, Vol.9, p.632021-632021 |
issn | 2296-2646 2296-2646 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e175662e611547589ca6596eff43b77a |
source | PubMed Central |
subjects | CH3NH3PbI3 Chemistry composition tuning internet of things power conversion efficiency triple anion triple cation |
title | Wide-Bandgap Halide Perovskites for Indoor Photovoltaics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wide-Bandgap%20Halide%20Perovskites%20for%20Indoor%20Photovoltaics&rft.jtitle=Frontiers%20in%20chemistry&rft.au=Jagadamma,%20Lethy%20Krishnan&rft.date=2021-03-26&rft.volume=9&rft.spage=632021&rft.epage=632021&rft.pages=632021-632021&rft.issn=2296-2646&rft.eissn=2296-2646&rft_id=info:doi/10.3389/fchem.2021.632021&rft_dat=%3Cproquest_doaj_%3E2511897867%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-2fde09f55555a2ce153716592fe9656928eb986d2b117157240d2a98d1c203bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2511897867&rft_id=info:pmid/33842430&rfr_iscdi=true |