Loading…
Clayey soil stabilization using alkali-activated cementitious materials
In this study, a clayey soil classified as A-7-5 according ASTM D3282, was stabilized using alkali-activated cementitious materials (AAC) added to the soil dry in percentages of 20 and 30%. Fly ash (F1, F2) with high unburned carbon content (up to 38.76%), hydrated lime (L) and granulated blast furn...
Saved in:
Published in: | Materiales de construcción (Madrid) 2020-01, Vol.70 (337), p.211-e211 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, a clayey soil classified as A-7-5 according ASTM D3282, was stabilized using alkali-activated cementitious materials (AAC) added to the soil dry in percentages of 20 and 30%. Fly ash (F1, F2) with high unburned carbon content (up to 38.76%), hydrated lime (L) and granulated blast furnace slag were used. Unconfined compressive strength and flexural strength at 28 days of curing and the durability after 12 wetting-drying cycles were evaluated. The results were compared with a soil-cement reference mixture. The soil treated with AAC-F1L showed a volume expansion of 0.51% and volume contraction of -0.57% compared with the 0.59% expansion and -0.68% contraction of the soil-cement reference mixture. Additionally, the mass loss after the wetting and drying cycles is only 3.74% which is slightly lower than the mass loss of the soil stabilized with ordinary Portland cement (OPC) (3.86%) and well below the value specified in Colombian regulations (7%). |
---|---|
ISSN: | 0465-2746 1988-3226 |
DOI: | 10.3989/mc.2020.07519 |