Loading…

Heat transfer in Jeffrey fluid flow over a power law lubricated surface inspired by solar radiations and magnetic flux

For faster speeds and higher load operations, modern bearings use lubricants with polymer components of increasing molecular weight. These lubricants exhibit non-Newtonian rheological behaviour. For industrial lubrication and bearing applications, power-law lubricants are often used. This article is...

Full description

Saved in:
Bibliographic Details
Published in:Case studies in thermal engineering 2023-09, Vol.49, p.103220, Article 103220
Main Authors: Ahmed, Jawad, Bourazza, S., Sarfraz, Mahnoor, Orsud, M.A., Eldin, Sayed M., Askar, Nadia A., Elkotb, Mohamed Abdelghany
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-718e1e230e5ce27273f3710512eac40412a941ab2757b13fe24cab964d5ff9733
cites cdi_FETCH-LOGICAL-c414t-718e1e230e5ce27273f3710512eac40412a941ab2757b13fe24cab964d5ff9733
container_end_page
container_issue
container_start_page 103220
container_title Case studies in thermal engineering
container_volume 49
creator Ahmed, Jawad
Bourazza, S.
Sarfraz, Mahnoor
Orsud, M.A.
Eldin, Sayed M.
Askar, Nadia A.
Elkotb, Mohamed Abdelghany
description For faster speeds and higher load operations, modern bearings use lubricants with polymer components of increasing molecular weight. These lubricants exhibit non-Newtonian rheological behaviour. For industrial lubrication and bearing applications, power-law lubricants are often used. This article is modeled through the slip as an interfacial condition to demonstrate the role of power-law lubrication on the stagnation point flow of magneto Jeffrey fluid. The significant features of magnetic flux over the lubricated surface are studied to control the flow and thermal mechanisms. The heating effect caused by the non-linear thermal radiations is analyzed. Interfacial conditions are developed by applying the continuity of fluid-lubricant shear-stress and velocity at the interface. The similarity transformation is used to acquire and then numerically solve the non-linear ordinary differential equations. By using MATLAB's bvp4c finite difference scheme, local similarity solutions are obtained for a power-law index equal to (1/2). The effects of lubrication, MHD, and thermal radiation on all the relevant parameters are scrutinized and illustrated in graphs. It is observed that the effect of slip and Jeffrey's material parameters raise the numerical value of the coefficient of skin friction along the x-axis. Further, the stronger magnetic field has the more tendency to reduce the fluid momentum and encourages the thermal field. Additionally, increasing the Prandtl number and Schmidt number raises the heat and mass transfer rates, respectively.
doi_str_mv 10.1016/j.csite.2023.103220
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e1a6d4e275ce46eb93de6305e534c779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214157X23005269</els_id><doaj_id>oai_doaj_org_article_e1a6d4e275ce46eb93de6305e534c779</doaj_id><sourcerecordid>S2214157X23005269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-718e1e230e5ce27273f3710512eac40412a941ab2757b13fe24cab964d5ff9733</originalsourceid><addsrcrecordid>eNp9kc9KAzEQxhdRUNQn8JIXaM0k2U334EHEvwheFLyF2WRSUtZNSbatfXtTK-LJSyZ84fvNTL6qugA-BQ7N5WJqcxhpKriQRZFC8IPqRAhQE6j1--Gf-3F1nvOCcw5azkCpk2r9QDiyMeGQPSUWBvZE3ifaMt-vgitn3LC4Lk_IlnFTao8b1q-6FCyO5FheJY-WijMvQypCt2U59phYQhdwDHHIDAfHPnA-0BjsDvx5Vh157DOd_9TT6u3u9vXmYfL8cv94c_08sQrUONEwIyAhOdWWhBZaeqmB1yAIreIKBLYKsBO61h1IT0JZ7NpGudr7Vkt5Wj3uuS7iwixT-MC0NRGD-RZimhtMZaieDAE2TpUupZVqqGulo0bymmqprNZtYck9y6aYcyL_ywNudkmYhflOwuySMPskiutq76Ky5jpQMtkGGiy58lt2LHOEf_1fxpqTaQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heat transfer in Jeffrey fluid flow over a power law lubricated surface inspired by solar radiations and magnetic flux</title><source>ScienceDirect Journals</source><creator>Ahmed, Jawad ; Bourazza, S. ; Sarfraz, Mahnoor ; Orsud, M.A. ; Eldin, Sayed M. ; Askar, Nadia A. ; Elkotb, Mohamed Abdelghany</creator><creatorcontrib>Ahmed, Jawad ; Bourazza, S. ; Sarfraz, Mahnoor ; Orsud, M.A. ; Eldin, Sayed M. ; Askar, Nadia A. ; Elkotb, Mohamed Abdelghany</creatorcontrib><description>For faster speeds and higher load operations, modern bearings use lubricants with polymer components of increasing molecular weight. These lubricants exhibit non-Newtonian rheological behaviour. For industrial lubrication and bearing applications, power-law lubricants are often used. This article is modeled through the slip as an interfacial condition to demonstrate the role of power-law lubrication on the stagnation point flow of magneto Jeffrey fluid. The significant features of magnetic flux over the lubricated surface are studied to control the flow and thermal mechanisms. The heating effect caused by the non-linear thermal radiations is analyzed. Interfacial conditions are developed by applying the continuity of fluid-lubricant shear-stress and velocity at the interface. The similarity transformation is used to acquire and then numerically solve the non-linear ordinary differential equations. By using MATLAB's bvp4c finite difference scheme, local similarity solutions are obtained for a power-law index equal to (1/2). The effects of lubrication, MHD, and thermal radiation on all the relevant parameters are scrutinized and illustrated in graphs. It is observed that the effect of slip and Jeffrey's material parameters raise the numerical value of the coefficient of skin friction along the x-axis. Further, the stronger magnetic field has the more tendency to reduce the fluid momentum and encourages the thermal field. Additionally, increasing the Prandtl number and Schmidt number raises the heat and mass transfer rates, respectively.</description><identifier>ISSN: 2214-157X</identifier><identifier>EISSN: 2214-157X</identifier><identifier>DOI: 10.1016/j.csite.2023.103220</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Jeffrey fluid ; Lubricated surface ; Magnetic field ; Non-linear thermal radiation ; Power-law fluid</subject><ispartof>Case studies in thermal engineering, 2023-09, Vol.49, p.103220, Article 103220</ispartof><rights>2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-718e1e230e5ce27273f3710512eac40412a941ab2757b13fe24cab964d5ff9733</citedby><cites>FETCH-LOGICAL-c414t-718e1e230e5ce27273f3710512eac40412a941ab2757b13fe24cab964d5ff9733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2214157X23005269$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Ahmed, Jawad</creatorcontrib><creatorcontrib>Bourazza, S.</creatorcontrib><creatorcontrib>Sarfraz, Mahnoor</creatorcontrib><creatorcontrib>Orsud, M.A.</creatorcontrib><creatorcontrib>Eldin, Sayed M.</creatorcontrib><creatorcontrib>Askar, Nadia A.</creatorcontrib><creatorcontrib>Elkotb, Mohamed Abdelghany</creatorcontrib><title>Heat transfer in Jeffrey fluid flow over a power law lubricated surface inspired by solar radiations and magnetic flux</title><title>Case studies in thermal engineering</title><description>For faster speeds and higher load operations, modern bearings use lubricants with polymer components of increasing molecular weight. These lubricants exhibit non-Newtonian rheological behaviour. For industrial lubrication and bearing applications, power-law lubricants are often used. This article is modeled through the slip as an interfacial condition to demonstrate the role of power-law lubrication on the stagnation point flow of magneto Jeffrey fluid. The significant features of magnetic flux over the lubricated surface are studied to control the flow and thermal mechanisms. The heating effect caused by the non-linear thermal radiations is analyzed. Interfacial conditions are developed by applying the continuity of fluid-lubricant shear-stress and velocity at the interface. The similarity transformation is used to acquire and then numerically solve the non-linear ordinary differential equations. By using MATLAB's bvp4c finite difference scheme, local similarity solutions are obtained for a power-law index equal to (1/2). The effects of lubrication, MHD, and thermal radiation on all the relevant parameters are scrutinized and illustrated in graphs. It is observed that the effect of slip and Jeffrey's material parameters raise the numerical value of the coefficient of skin friction along the x-axis. Further, the stronger magnetic field has the more tendency to reduce the fluid momentum and encourages the thermal field. Additionally, increasing the Prandtl number and Schmidt number raises the heat and mass transfer rates, respectively.</description><subject>Jeffrey fluid</subject><subject>Lubricated surface</subject><subject>Magnetic field</subject><subject>Non-linear thermal radiation</subject><subject>Power-law fluid</subject><issn>2214-157X</issn><issn>2214-157X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc9KAzEQxhdRUNQn8JIXaM0k2U334EHEvwheFLyF2WRSUtZNSbatfXtTK-LJSyZ84fvNTL6qugA-BQ7N5WJqcxhpKriQRZFC8IPqRAhQE6j1--Gf-3F1nvOCcw5azkCpk2r9QDiyMeGQPSUWBvZE3ifaMt-vgitn3LC4Lk_IlnFTao8b1q-6FCyO5FheJY-WijMvQypCt2U59phYQhdwDHHIDAfHPnA-0BjsDvx5Vh157DOd_9TT6u3u9vXmYfL8cv94c_08sQrUONEwIyAhOdWWhBZaeqmB1yAIreIKBLYKsBO61h1IT0JZ7NpGudr7Vkt5Wj3uuS7iwixT-MC0NRGD-RZimhtMZaieDAE2TpUupZVqqGulo0bymmqprNZtYck9y6aYcyL_ywNudkmYhflOwuySMPskiutq76Ky5jpQMtkGGiy58lt2LHOEf_1fxpqTaQ</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Ahmed, Jawad</creator><creator>Bourazza, S.</creator><creator>Sarfraz, Mahnoor</creator><creator>Orsud, M.A.</creator><creator>Eldin, Sayed M.</creator><creator>Askar, Nadia A.</creator><creator>Elkotb, Mohamed Abdelghany</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202309</creationdate><title>Heat transfer in Jeffrey fluid flow over a power law lubricated surface inspired by solar radiations and magnetic flux</title><author>Ahmed, Jawad ; Bourazza, S. ; Sarfraz, Mahnoor ; Orsud, M.A. ; Eldin, Sayed M. ; Askar, Nadia A. ; Elkotb, Mohamed Abdelghany</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-718e1e230e5ce27273f3710512eac40412a941ab2757b13fe24cab964d5ff9733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Jeffrey fluid</topic><topic>Lubricated surface</topic><topic>Magnetic field</topic><topic>Non-linear thermal radiation</topic><topic>Power-law fluid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Jawad</creatorcontrib><creatorcontrib>Bourazza, S.</creatorcontrib><creatorcontrib>Sarfraz, Mahnoor</creatorcontrib><creatorcontrib>Orsud, M.A.</creatorcontrib><creatorcontrib>Eldin, Sayed M.</creatorcontrib><creatorcontrib>Askar, Nadia A.</creatorcontrib><creatorcontrib>Elkotb, Mohamed Abdelghany</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Case studies in thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Jawad</au><au>Bourazza, S.</au><au>Sarfraz, Mahnoor</au><au>Orsud, M.A.</au><au>Eldin, Sayed M.</au><au>Askar, Nadia A.</au><au>Elkotb, Mohamed Abdelghany</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat transfer in Jeffrey fluid flow over a power law lubricated surface inspired by solar radiations and magnetic flux</atitle><jtitle>Case studies in thermal engineering</jtitle><date>2023-09</date><risdate>2023</risdate><volume>49</volume><spage>103220</spage><pages>103220-</pages><artnum>103220</artnum><issn>2214-157X</issn><eissn>2214-157X</eissn><abstract>For faster speeds and higher load operations, modern bearings use lubricants with polymer components of increasing molecular weight. These lubricants exhibit non-Newtonian rheological behaviour. For industrial lubrication and bearing applications, power-law lubricants are often used. This article is modeled through the slip as an interfacial condition to demonstrate the role of power-law lubrication on the stagnation point flow of magneto Jeffrey fluid. The significant features of magnetic flux over the lubricated surface are studied to control the flow and thermal mechanisms. The heating effect caused by the non-linear thermal radiations is analyzed. Interfacial conditions are developed by applying the continuity of fluid-lubricant shear-stress and velocity at the interface. The similarity transformation is used to acquire and then numerically solve the non-linear ordinary differential equations. By using MATLAB's bvp4c finite difference scheme, local similarity solutions are obtained for a power-law index equal to (1/2). The effects of lubrication, MHD, and thermal radiation on all the relevant parameters are scrutinized and illustrated in graphs. It is observed that the effect of slip and Jeffrey's material parameters raise the numerical value of the coefficient of skin friction along the x-axis. Further, the stronger magnetic field has the more tendency to reduce the fluid momentum and encourages the thermal field. Additionally, increasing the Prandtl number and Schmidt number raises the heat and mass transfer rates, respectively.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.csite.2023.103220</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2214-157X
ispartof Case studies in thermal engineering, 2023-09, Vol.49, p.103220, Article 103220
issn 2214-157X
2214-157X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e1a6d4e275ce46eb93de6305e534c779
source ScienceDirect Journals
subjects Jeffrey fluid
Lubricated surface
Magnetic field
Non-linear thermal radiation
Power-law fluid
title Heat transfer in Jeffrey fluid flow over a power law lubricated surface inspired by solar radiations and magnetic flux
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A20%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20transfer%20in%20Jeffrey%20fluid%20flow%20over%20a%20power%20law%20lubricated%20surface%20inspired%20by%20solar%20radiations%20and%20magnetic%20flux&rft.jtitle=Case%20studies%20in%20thermal%20engineering&rft.au=Ahmed,%20Jawad&rft.date=2023-09&rft.volume=49&rft.spage=103220&rft.pages=103220-&rft.artnum=103220&rft.issn=2214-157X&rft.eissn=2214-157X&rft_id=info:doi/10.1016/j.csite.2023.103220&rft_dat=%3Celsevier_doaj_%3ES2214157X23005269%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-718e1e230e5ce27273f3710512eac40412a941ab2757b13fe24cab964d5ff9733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true