Loading…

Estrogen Receptors and Estrogen-Induced Uterine Vasodilation in Pregnancy

Normal pregnancy is associated with dramatic increases in uterine blood flow to facilitate the bidirectional maternal-fetal exchanges of respiratory gases and to provide sole nutrient support for fetal growth and survival. The mechanism(s) underlying pregnancy-associated uterine vasodilation remain...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2020-06, Vol.21 (12), p.4349
Main Authors: Bai, Jin, Qi, Qian-Rong, Li, Yan, Day, Robert, Makhoul, Josh, Magness, Ronald R, Chen, Dong-Bao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Normal pregnancy is associated with dramatic increases in uterine blood flow to facilitate the bidirectional maternal-fetal exchanges of respiratory gases and to provide sole nutrient support for fetal growth and survival. The mechanism(s) underlying pregnancy-associated uterine vasodilation remain incompletely understood, but this is associated with elevated estrogens, which stimulate specific estrogen receptor (ER)-dependent vasodilator production in the uterine artery (UA). The classical ERs (ERα and ERβ) and the plasma-bound G protein-coupled ER (GPR30/GPER) are expressed in UA endothelial cells and smooth muscle cells, mediating the vasodilatory effects of estrogens through genomic and/or nongenomic pathways that are likely epigenetically modified. The activation of these three ERs by estrogens enhances the endothelial production of nitric oxide (NO), which has been shown to play a key role in uterine vasodilation during pregnancy. However, the local blockade of NO biosynthesis only partially attenuates estrogen-induced and pregnancy-associated uterine vasodilation, suggesting that mechanisms other than NO exist to mediate uterine vasodilation. In this review, we summarize the literature on the role of NO in ER-mediated mechanisms controlling estrogen-induced and pregnancy-associated uterine vasodilation and our recent work on a "new" UA vasodilator hydrogen sulfide (H S) that has dramatically changed our view of how estrogens regulate uterine vasodilation in pregnancy.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms21124349