Loading…

Application of Genetic Algorithm for More Efficient Multi-Layer Thickness Optimization in Solar Cells

Thin-film solar cells are predominately designed similar to a stacked structure. Optimizing the layer thicknesses in this stack structure is crucial to extract the best efficiency of the solar cell. The commonplace method used in optimization simulations, such as for optimizing the optical spacer la...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020-04, Vol.13 (7), p.1726
Main Authors: Vincent, Premkumar, Cunha Sergio, Gwenaelle, Jang, Jaewon, Kang, In Man, Park, Jaehoon, Kim, Hyeok, Lee, Minho, Bae, Jin-Hyuk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thin-film solar cells are predominately designed similar to a stacked structure. Optimizing the layer thicknesses in this stack structure is crucial to extract the best efficiency of the solar cell. The commonplace method used in optimization simulations, such as for optimizing the optical spacer layers’ thicknesses, is the parameter sweep. Our simulation study shows that the implementation of a meta-heuristic method like the genetic algorithm results in a significantly faster and accurate search method when compared to the brute-force parameter sweep method in both single and multi-layer optimization. While other sweep methods can also outperform the brute-force method, they do not consistently exhibit 100% accuracy in the optimized results like our genetic algorithm. We have used a well-studied P3HT-based structure to test our algorithm. Our best-case scenario was observed to use 60.84% fewer simulations than the brute-force method.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13071726