Loading…
Resistance to Chemotherapeutic 5-Fluorouracil Conferred by Modulation of Heterochromatic Integrity through Ino80 Function in Fission Yeast
5-Fluorouracil (5-FU) is a conventional chemotherapeutic drug widely used in clinics worldwide, but development of resistance that compromises responsiveness remains a major hurdle to its efficacy. The mechanism underlying 5-FU resistance is conventionally attributed to the disruption of nucleotide...
Saved in:
Published in: | International journal of molecular sciences 2023-06, Vol.24 (13), p.10687 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 5-Fluorouracil (5-FU) is a conventional chemotherapeutic drug widely used in clinics worldwide, but development of resistance that compromises responsiveness remains a major hurdle to its efficacy. The mechanism underlying 5-FU resistance is conventionally attributed to the disruption of nucleotide synthesis, even though research has implicated other pathways such as RNA processing and chromatin dysregulation. Aiming to clarify resistance mechanisms of 5-FU, we tested the response of a collection of fission yeast (
) null mutants, which confer multiple environmental factor responsiveness (MER). Our screen identified disruption of membrane transport, chromosome segregation and mitochondrial oxidative phosphorylation to increase cellular susceptibility towards 5-FU. Conversely, we revealed several null mutants of Ino80 complex factors exhibited resistance to 5-FU. Furthermore, attenuation of Ino80 function via deleting several subunit genes reversed loss of chromosome-segregation fidelity in 5-FU in the loss-of-function mutant of the Argonaute protein, which regulates RNA interference (RNAi)-dependent maintenance of pericentromeric heterochromatin. Our study thus uncovered a critical role played by chromatin remodeling Ino80 complex factors in 5-FU resistance, which may constitute a possible target to modulate in reversing 5-FU resistance. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms241310687 |