Loading…

Genome-wide identification of the adaptor protein complexes and its expression patterns analysis in foxtail millet (Setaria italica L.)

Adapter proteins (APs) complex is a class of heterotetrameric complexes comprising of 4-subunits with important regulatory functions in eukaryotic cell membrane vesicle trafficking. Foxtail millet (Setaria italica L.) is a significant C model plant for monocotyledon studies, and vesicle trafficking...

Full description

Saved in:
Bibliographic Details
Published in:BMC plant biology 2025-01, Vol.25 (1), p.7-16, Article 7
Main Authors: Wang, Dan, Su, Min, Hao, Jian-Hong, Li, Zi-Dong, Dong, Shuqi, Yuan, Xiangyang, Li, Xiaorui, Gao, Lulu, Chu, Xiaoqian, Yang, Guanghui, Wang, Jia-Gang, Du, Huiling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adapter proteins (APs) complex is a class of heterotetrameric complexes comprising of 4-subunits with important regulatory functions in eukaryotic cell membrane vesicle trafficking. Foxtail millet (Setaria italica L.) is a significant C model plant for monocotyledon studies, and vesicle trafficking may plays a crucial role in various life activities related to growth and development. Despite this importance, studies on AP complexes in foxtail millet have been lacking. This research conducted genome-wide identification and systematical analysis of AP complexes in foxtail millet. 33 SiAP complex genes were identified and classified into 7 groups, distributed unevenly across 9 chromosomes in foxtail millet. Among these genes, 11 segmental duplication pairs were found. Out of the 33 SiAP complex genes, 24 exhibited collinear relationships with Setaria viridis, while only one showed relationship with Arabidopsis thaliana. Gene structure and motif composition were investigated to understand the function and evolution of these SiAP complex genes. Furthermore, these promoter region of the SiAP complex genes contains 49 cis-elements that are associated with responses to light, hormones, abiotic stress, growth and development. The interaction network between the SiAP complexes was analyzed, and there were strong interactions among the SiAP complex proteins. Expression patterns of SiAP complex genes in different organs and developmental stages of foxtail millet were investigated. The majority of the SiAP complex genes exhibited expressed in multiple tissues, with some genes being predominantly expressed in specific tissues. Subsequently, we selected SiAP4M and SiAP2M for validation of subcellular localization. The signal of 35 S:: SiAP4M: GFP (Long) and 35 S:: SiAP4M: GFP (Short) fused proteins were primarily observed in the nucleus, while the signal of 35 S:: SiAP2M: GFP fused proteins was widely distributed on the cell membrane and vesicles. Overall, this study presents a comprehensive map of the SiAP complexes in foxtail millet. These findings not only administer to understanding the biological functions of AP complexes in foxtail millet growth and development but also offer insights for enhancing genetic breeding in this crop.
ISSN:1471-2229
1471-2229
DOI:10.1186/s12870-024-05959-9