Loading…
Escape from X Chromosome Inactivation and the Female Predominance in Autoimmune Diseases
Women represent 80% of people affected by autoimmune diseases. Although, many studies have demonstrated a role for sex hormone receptor signaling, particularly estrogens, in the direct regulation of innate and adaptive components of the immune system, recent data suggest that female sex hormones are...
Saved in:
Published in: | International journal of molecular sciences 2021-01, Vol.22 (3), p.1114 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c479t-9c7eba3d05fa4b3a53097354f68b0c39137d4256bcf5e923880ba1148807cd893 |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-9c7eba3d05fa4b3a53097354f68b0c39137d4256bcf5e923880ba1148807cd893 |
container_end_page | |
container_issue | 3 |
container_start_page | 1114 |
container_title | International journal of molecular sciences |
container_volume | 22 |
creator | Youness, Ali Miquel, Charles-Henry Guéry, Jean-Charles |
description | Women represent 80% of people affected by autoimmune diseases. Although, many studies have demonstrated a role for sex hormone receptor signaling, particularly estrogens, in the direct regulation of innate and adaptive components of the immune system, recent data suggest that female sex hormones are not the only cause of the female predisposition to autoimmunity. Besides sex steroid hormones, growing evidence points towards the role of X-linked genetic factors. In female mammals, one of the two X chromosomes is randomly inactivated during embryonic development, resulting in a cellular mosaicism, where about one-half of the cells in a given tissue express either the maternal X chromosome or the paternal one. X chromosome inactivation (XCI) is however not complete and 15 to 23% of genes from the inactive X chromosome (Xi) escape XCI, thereby contributing to the emergence of a female-specific heterogeneous population of cells with bi-allelic expression of some X-linked genes. Although the direct contribution of this genetic mechanism in the female susceptibility to autoimmunity still remains to be established, the cellular mosaicism resulting from XCI escape is likely to create a unique functional plasticity within female immune cells. Here, we review recent findings identifying key immune related genes that escape XCI and the relationship between gene dosage imbalance and functional responsiveness in female cells. |
doi_str_mv | 10.3390/ijms22031114 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e1fef2afeea644b9a38d54c7fc01d0be</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e1fef2afeea644b9a38d54c7fc01d0be</doaj_id><sourcerecordid>2482305118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-9c7eba3d05fa4b3a53097354f68b0c39137d4256bcf5e923880ba1148807cd893</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxZfS0KRpbz0XQU-BuNXn7upSME7SGAzpoYXcxKx2FMt4JVfaNfS_r1KnwenpDaM3PzHzquoDo5-F0PSL3wyZcyoYY_JVdcYk5zNK6-b1UX1avc15QykXXOk31akQUre1UmfV_XW2sEPiUhzIPVmsi8YcByTLAHb0exh9DARCT8Y1khscYIvke8I-Dj5AsEh8IPNpjH4YpoDkymeEjPlddeJgm_H9k55XP2-ufyxuZ6u7b8vFfDWzstHjTNsGOxA9VQ5kJ0AJqhuhpKvbjlqhmWh6yVXdWadQc9G2tIOyadHG9q0W59XywO0jbMwu-QHSbxPBm7-NmB4MpNHbLRpkDh0Hhwi1lJ0G0fZK2sZZynraYWF9PbB2UzdgbzGMCbYvoC9fgl-bh7g3TTmmFLwALg6A9X9jt_OVeexRUasSFt-z4v309FmKvybMo9nEKYVyK8NlywVVjLXFdXlw2RRzTuiesYyax_zNcf7F_vF4g2fzv8DFH21dq68</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2482305118</pqid></control><display><type>article</type><title>Escape from X Chromosome Inactivation and the Female Predominance in Autoimmune Diseases</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><source>Coronavirus Research Database</source><creator>Youness, Ali ; Miquel, Charles-Henry ; Guéry, Jean-Charles</creator><creatorcontrib>Youness, Ali ; Miquel, Charles-Henry ; Guéry, Jean-Charles</creatorcontrib><description>Women represent 80% of people affected by autoimmune diseases. Although, many studies have demonstrated a role for sex hormone receptor signaling, particularly estrogens, in the direct regulation of innate and adaptive components of the immune system, recent data suggest that female sex hormones are not the only cause of the female predisposition to autoimmunity. Besides sex steroid hormones, growing evidence points towards the role of X-linked genetic factors. In female mammals, one of the two X chromosomes is randomly inactivated during embryonic development, resulting in a cellular mosaicism, where about one-half of the cells in a given tissue express either the maternal X chromosome or the paternal one. X chromosome inactivation (XCI) is however not complete and 15 to 23% of genes from the inactive X chromosome (Xi) escape XCI, thereby contributing to the emergence of a female-specific heterogeneous population of cells with bi-allelic expression of some X-linked genes. Although the direct contribution of this genetic mechanism in the female susceptibility to autoimmunity still remains to be established, the cellular mosaicism resulting from XCI escape is likely to create a unique functional plasticity within female immune cells. Here, we review recent findings identifying key immune related genes that escape XCI and the relationship between gene dosage imbalance and functional responsiveness in female cells.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22031114</identifier><identifier>PMID: 33498655</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adaptive systems ; Animals ; Autoimmune diseases ; Autoimmune Diseases / genetics ; Chromosomes ; Chromosomes, Human, X ; Cytokines ; Dendritic cells ; Disease ; Embryogenesis ; Embryos ; Estrogens ; Female ; Females ; Functional plasticity ; Gene dosage ; Gene expression ; Genes ; Genetic factors ; Histone Demethylases / genetics ; Histone Demethylases / immunology ; Histone Demethylases / metabolism ; Hormones ; Humans ; Immune system ; Immunity / genetics ; Immunology ; Infections ; Intracellular Signaling Peptides and Proteins / genetics ; Intracellular Signaling Peptides and Proteins / immunology ; Life Sciences ; Lupus ; Male ; Males ; Mosaicism ; Mutation ; Pathogenesis ; Pathogens ; Polymorphism, Single Nucleotide ; Review ; RNA, Long Noncoding / genetics ; RNA, Long Noncoding / immunology ; Scleroderma ; sex bias ; Sex chromosomes ; Sex hormones ; Steroid hormones ; Steroids ; systemic lupus erythematosus ; Testes ; Toll-Like Receptor 7 / genetics ; Womens health ; X chromosome inactivation ; X chromosomes ; Y chromosomes</subject><ispartof>International journal of molecular sciences, 2021-01, Vol.22 (3), p.1114</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-9c7eba3d05fa4b3a53097354f68b0c39137d4256bcf5e923880ba1148807cd893</citedby><cites>FETCH-LOGICAL-c479t-9c7eba3d05fa4b3a53097354f68b0c39137d4256bcf5e923880ba1148807cd893</cites><orcidid>0000-0003-4499-3270 ; 0000-0002-0096-4489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2482305118/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2482305118?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33498655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://ut3-toulouseinp.hal.science/hal-03652202$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Youness, Ali</creatorcontrib><creatorcontrib>Miquel, Charles-Henry</creatorcontrib><creatorcontrib>Guéry, Jean-Charles</creatorcontrib><title>Escape from X Chromosome Inactivation and the Female Predominance in Autoimmune Diseases</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Women represent 80% of people affected by autoimmune diseases. Although, many studies have demonstrated a role for sex hormone receptor signaling, particularly estrogens, in the direct regulation of innate and adaptive components of the immune system, recent data suggest that female sex hormones are not the only cause of the female predisposition to autoimmunity. Besides sex steroid hormones, growing evidence points towards the role of X-linked genetic factors. In female mammals, one of the two X chromosomes is randomly inactivated during embryonic development, resulting in a cellular mosaicism, where about one-half of the cells in a given tissue express either the maternal X chromosome or the paternal one. X chromosome inactivation (XCI) is however not complete and 15 to 23% of genes from the inactive X chromosome (Xi) escape XCI, thereby contributing to the emergence of a female-specific heterogeneous population of cells with bi-allelic expression of some X-linked genes. Although the direct contribution of this genetic mechanism in the female susceptibility to autoimmunity still remains to be established, the cellular mosaicism resulting from XCI escape is likely to create a unique functional plasticity within female immune cells. Here, we review recent findings identifying key immune related genes that escape XCI and the relationship between gene dosage imbalance and functional responsiveness in female cells.</description><subject>Adaptive systems</subject><subject>Animals</subject><subject>Autoimmune diseases</subject><subject>Autoimmune Diseases / genetics</subject><subject>Chromosomes</subject><subject>Chromosomes, Human, X</subject><subject>Cytokines</subject><subject>Dendritic cells</subject><subject>Disease</subject><subject>Embryogenesis</subject><subject>Embryos</subject><subject>Estrogens</subject><subject>Female</subject><subject>Females</subject><subject>Functional plasticity</subject><subject>Gene dosage</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic factors</subject><subject>Histone Demethylases / genetics</subject><subject>Histone Demethylases / immunology</subject><subject>Histone Demethylases / metabolism</subject><subject>Hormones</subject><subject>Humans</subject><subject>Immune system</subject><subject>Immunity / genetics</subject><subject>Immunology</subject><subject>Infections</subject><subject>Intracellular Signaling Peptides and Proteins / genetics</subject><subject>Intracellular Signaling Peptides and Proteins / immunology</subject><subject>Life Sciences</subject><subject>Lupus</subject><subject>Male</subject><subject>Males</subject><subject>Mosaicism</subject><subject>Mutation</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Review</subject><subject>RNA, Long Noncoding / genetics</subject><subject>RNA, Long Noncoding / immunology</subject><subject>Scleroderma</subject><subject>sex bias</subject><subject>Sex chromosomes</subject><subject>Sex hormones</subject><subject>Steroid hormones</subject><subject>Steroids</subject><subject>systemic lupus erythematosus</subject><subject>Testes</subject><subject>Toll-Like Receptor 7 / genetics</subject><subject>Womens health</subject><subject>X chromosome inactivation</subject><subject>X chromosomes</subject><subject>Y chromosomes</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1rGzEQxZfS0KRpbz0XQU-BuNXn7upSME7SGAzpoYXcxKx2FMt4JVfaNfS_r1KnwenpDaM3PzHzquoDo5-F0PSL3wyZcyoYY_JVdcYk5zNK6-b1UX1avc15QykXXOk31akQUre1UmfV_XW2sEPiUhzIPVmsi8YcByTLAHb0exh9DARCT8Y1khscYIvke8I-Dj5AsEh8IPNpjH4YpoDkymeEjPlddeJgm_H9k55XP2-ufyxuZ6u7b8vFfDWzstHjTNsGOxA9VQ5kJ0AJqhuhpKvbjlqhmWh6yVXdWadQc9G2tIOyadHG9q0W59XywO0jbMwu-QHSbxPBm7-NmB4MpNHbLRpkDh0Hhwi1lJ0G0fZK2sZZynraYWF9PbB2UzdgbzGMCbYvoC9fgl-bh7g3TTmmFLwALg6A9X9jt_OVeexRUasSFt-z4v309FmKvybMo9nEKYVyK8NlywVVjLXFdXlw2RRzTuiesYyax_zNcf7F_vF4g2fzv8DFH21dq68</recordid><startdate>20210123</startdate><enddate>20210123</enddate><creator>Youness, Ali</creator><creator>Miquel, Charles-Henry</creator><creator>Guéry, Jean-Charles</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4499-3270</orcidid><orcidid>https://orcid.org/0000-0002-0096-4489</orcidid></search><sort><creationdate>20210123</creationdate><title>Escape from X Chromosome Inactivation and the Female Predominance in Autoimmune Diseases</title><author>Youness, Ali ; Miquel, Charles-Henry ; Guéry, Jean-Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-9c7eba3d05fa4b3a53097354f68b0c39137d4256bcf5e923880ba1148807cd893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive systems</topic><topic>Animals</topic><topic>Autoimmune diseases</topic><topic>Autoimmune Diseases / genetics</topic><topic>Chromosomes</topic><topic>Chromosomes, Human, X</topic><topic>Cytokines</topic><topic>Dendritic cells</topic><topic>Disease</topic><topic>Embryogenesis</topic><topic>Embryos</topic><topic>Estrogens</topic><topic>Female</topic><topic>Females</topic><topic>Functional plasticity</topic><topic>Gene dosage</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic factors</topic><topic>Histone Demethylases / genetics</topic><topic>Histone Demethylases / immunology</topic><topic>Histone Demethylases / metabolism</topic><topic>Hormones</topic><topic>Humans</topic><topic>Immune system</topic><topic>Immunity / genetics</topic><topic>Immunology</topic><topic>Infections</topic><topic>Intracellular Signaling Peptides and Proteins / genetics</topic><topic>Intracellular Signaling Peptides and Proteins / immunology</topic><topic>Life Sciences</topic><topic>Lupus</topic><topic>Male</topic><topic>Males</topic><topic>Mosaicism</topic><topic>Mutation</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Review</topic><topic>RNA, Long Noncoding / genetics</topic><topic>RNA, Long Noncoding / immunology</topic><topic>Scleroderma</topic><topic>sex bias</topic><topic>Sex chromosomes</topic><topic>Sex hormones</topic><topic>Steroid hormones</topic><topic>Steroids</topic><topic>systemic lupus erythematosus</topic><topic>Testes</topic><topic>Toll-Like Receptor 7 / genetics</topic><topic>Womens health</topic><topic>X chromosome inactivation</topic><topic>X chromosomes</topic><topic>Y chromosomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Youness, Ali</creatorcontrib><creatorcontrib>Miquel, Charles-Henry</creatorcontrib><creatorcontrib>Guéry, Jean-Charles</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Youness, Ali</au><au>Miquel, Charles-Henry</au><au>Guéry, Jean-Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Escape from X Chromosome Inactivation and the Female Predominance in Autoimmune Diseases</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-01-23</date><risdate>2021</risdate><volume>22</volume><issue>3</issue><spage>1114</spage><pages>1114-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Women represent 80% of people affected by autoimmune diseases. Although, many studies have demonstrated a role for sex hormone receptor signaling, particularly estrogens, in the direct regulation of innate and adaptive components of the immune system, recent data suggest that female sex hormones are not the only cause of the female predisposition to autoimmunity. Besides sex steroid hormones, growing evidence points towards the role of X-linked genetic factors. In female mammals, one of the two X chromosomes is randomly inactivated during embryonic development, resulting in a cellular mosaicism, where about one-half of the cells in a given tissue express either the maternal X chromosome or the paternal one. X chromosome inactivation (XCI) is however not complete and 15 to 23% of genes from the inactive X chromosome (Xi) escape XCI, thereby contributing to the emergence of a female-specific heterogeneous population of cells with bi-allelic expression of some X-linked genes. Although the direct contribution of this genetic mechanism in the female susceptibility to autoimmunity still remains to be established, the cellular mosaicism resulting from XCI escape is likely to create a unique functional plasticity within female immune cells. Here, we review recent findings identifying key immune related genes that escape XCI and the relationship between gene dosage imbalance and functional responsiveness in female cells.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33498655</pmid><doi>10.3390/ijms22031114</doi><orcidid>https://orcid.org/0000-0003-4499-3270</orcidid><orcidid>https://orcid.org/0000-0002-0096-4489</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2021-01, Vol.22 (3), p.1114 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e1fef2afeea644b9a38d54c7fc01d0be |
source | Publicly Available Content Database; PubMed Central(OpenAccess); Coronavirus Research Database |
subjects | Adaptive systems Animals Autoimmune diseases Autoimmune Diseases / genetics Chromosomes Chromosomes, Human, X Cytokines Dendritic cells Disease Embryogenesis Embryos Estrogens Female Females Functional plasticity Gene dosage Gene expression Genes Genetic factors Histone Demethylases / genetics Histone Demethylases / immunology Histone Demethylases / metabolism Hormones Humans Immune system Immunity / genetics Immunology Infections Intracellular Signaling Peptides and Proteins / genetics Intracellular Signaling Peptides and Proteins / immunology Life Sciences Lupus Male Males Mosaicism Mutation Pathogenesis Pathogens Polymorphism, Single Nucleotide Review RNA, Long Noncoding / genetics RNA, Long Noncoding / immunology Scleroderma sex bias Sex chromosomes Sex hormones Steroid hormones Steroids systemic lupus erythematosus Testes Toll-Like Receptor 7 / genetics Womens health X chromosome inactivation X chromosomes Y chromosomes |
title | Escape from X Chromosome Inactivation and the Female Predominance in Autoimmune Diseases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Escape%20from%20X%20Chromosome%20Inactivation%20and%20the%20Female%20Predominance%20in%20Autoimmune%20Diseases&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Youness,%20Ali&rft.date=2021-01-23&rft.volume=22&rft.issue=3&rft.spage=1114&rft.pages=1114-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22031114&rft_dat=%3Cproquest_doaj_%3E2482305118%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-9c7eba3d05fa4b3a53097354f68b0c39137d4256bcf5e923880ba1148807cd893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2482305118&rft_id=info:pmid/33498655&rfr_iscdi=true |