Loading…

Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments

•An analytical model is developed to predict the cavitation induced undercooling, grain nucleation and the solidified grain size.•Cavitation bubble implosion in metallic melts were imaged in-situ by ultrafast synchrotron X-ray imaging.•The model takes into account of ultrasound input intensity, cavi...

Full description

Saved in:
Bibliographic Details
Published in:Ultrasonics sonochemistry 2021-12, Vol.80, p.105832-105832, Article 105832
Main Authors: Huang, Haijun, Qin, Ling, Tang, Haibin, Shu, Da, Yan, Wentao, Sun, Baode, Mi, Jiawei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c537t-50c57c81476171c08f0e225a9d4d3b2f0b53f4626fafb874aaf8f2f6f456dc4f3
cites cdi_FETCH-LOGICAL-c537t-50c57c81476171c08f0e225a9d4d3b2f0b53f4626fafb874aaf8f2f6f456dc4f3
container_end_page 105832
container_issue
container_start_page 105832
container_title Ultrasonics sonochemistry
container_volume 80
creator Huang, Haijun
Qin, Ling
Tang, Haibin
Shu, Da
Yan, Wentao
Sun, Baode
Mi, Jiawei
description •An analytical model is developed to predict the cavitation induced undercooling, grain nucleation and the solidified grain size.•Cavitation bubble implosion in metallic melts were imaged in-situ by ultrafast synchrotron X-ray imaging.•The model takes into account of ultrasound input intensity, cavitation bubble size and the effect of melt temperature.•The solidified grain size of different alloys were calculated using this model and compared with the experimental data. Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and grain size based on the ultrasound processing parameters.In this paper, an analytical model is developed to calculate the cavitation enhanced undercooling and the USMP refined solidification microstructure and grain size for Al-Cu alloys. Ultrafast synchrotron X-ray imaging and tomography techniques were used to collect the real-time experimental data for validating the model and the calculated results. The comparison between modeling and experiments reveal that there exists an effective ultrasound input power intensity for maximizing the grain refinement effects for the Al-Cu alloys, which is in the range of 20-45 MW/m2. In addition, a monotonous increase in temperature during USMP has negative effect on producing new nuclei, deteriorating the benefit of microstructure refinement due to the application of ultrasound.
doi_str_mv 10.1016/j.ultsonch.2021.105832
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e2029373ee0b4493bd7a6a4689334d4f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350417721003746</els_id><doaj_id>oai_doaj_org_article_e2029373ee0b4493bd7a6a4689334d4f</doaj_id><sourcerecordid>2604022891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-50c57c81476171c08f0e225a9d4d3b2f0b53f4626fafb874aaf8f2f6f456dc4f3</originalsourceid><addsrcrecordid>eNqFUsFu3CAQtapWTZr2FyIfe_EWAwbcQ9UoatJIkXppzgjDkLBiYQt41T3030vW2ag59cTozZs3w8xrmvMerXrUs0_r1exLjkE_rDDCfQUHQfCr5rQXnHRYYPG6xmRAHe05P2ne5bxGCJERo7fNCaECM47pafPnzpekcpyDabXauaKKi6F1wcwaTBtm7eEItRsoyrc5emecdfqAf24vQquC8vtSEd9uogFfAdPuVOUttdO-TaB8V9wGWvi9hVSDUPL75o1VPsOHp_esubv69vPye3f74_rm8uK20wPhpRuQHrgWPeWs571GwiLAeFCjoYZM2KJpIJYyzKyyk-BUKSsstszSgRlNLTlrbhZdE9Vabmt3lfYyKicPQEz3UqU6vwcJdZ0j4QQATZSOZDJcMUWZGAmh5qD1ZdHaztMGjK7_SMq_EH2ZCe5B3sedFIwQwnEV-PgkkOKvGXKRG5c1eK8CxDlLzBBFGIuxr1S2UHWKOSewz216JB99INfy6AP56AO5-KAWnv875HPZ8fCV8HUhQF37zkGSWTsI9eYugS51L-5_Pf4CRoXLTQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604022891</pqid></control><display><type>article</type><title>Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments</title><source>Open Access: PubMed Central</source><source>Elsevier</source><creator>Huang, Haijun ; Qin, Ling ; Tang, Haibin ; Shu, Da ; Yan, Wentao ; Sun, Baode ; Mi, Jiawei</creator><creatorcontrib>Huang, Haijun ; Qin, Ling ; Tang, Haibin ; Shu, Da ; Yan, Wentao ; Sun, Baode ; Mi, Jiawei</creatorcontrib><description>•An analytical model is developed to predict the cavitation induced undercooling, grain nucleation and the solidified grain size.•Cavitation bubble implosion in metallic melts were imaged in-situ by ultrafast synchrotron X-ray imaging.•The model takes into account of ultrasound input intensity, cavitation bubble size and the effect of melt temperature.•The solidified grain size of different alloys were calculated using this model and compared with the experimental data. Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and grain size based on the ultrasound processing parameters.In this paper, an analytical model is developed to calculate the cavitation enhanced undercooling and the USMP refined solidification microstructure and grain size for Al-Cu alloys. Ultrafast synchrotron X-ray imaging and tomography techniques were used to collect the real-time experimental data for validating the model and the calculated results. The comparison between modeling and experiments reveal that there exists an effective ultrasound input power intensity for maximizing the grain refinement effects for the Al-Cu alloys, which is in the range of 20-45 MW/m2. In addition, a monotonous increase in temperature during USMP has negative effect on producing new nuclei, deteriorating the benefit of microstructure refinement due to the application of ultrasound.</description><identifier>ISSN: 1350-4177</identifier><identifier>EISSN: 1873-2828</identifier><identifier>DOI: 10.1016/j.ultsonch.2021.105832</identifier><identifier>PMID: 34826724</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Modelling ; Nucleation of metal alloys ; Original ; Ultrafast synchrotron X-ray imaging and tomography ; Ultrasound Cavitation ; Ultrasound melt processing</subject><ispartof>Ultrasonics sonochemistry, 2021-12, Vol.80, p.105832-105832, Article 105832</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-50c57c81476171c08f0e225a9d4d3b2f0b53f4626fafb874aaf8f2f6f456dc4f3</citedby><cites>FETCH-LOGICAL-c537t-50c57c81476171c08f0e225a9d4d3b2f0b53f4626fafb874aaf8f2f6f456dc4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633372/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633372/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34826724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Haijun</creatorcontrib><creatorcontrib>Qin, Ling</creatorcontrib><creatorcontrib>Tang, Haibin</creatorcontrib><creatorcontrib>Shu, Da</creatorcontrib><creatorcontrib>Yan, Wentao</creatorcontrib><creatorcontrib>Sun, Baode</creatorcontrib><creatorcontrib>Mi, Jiawei</creatorcontrib><title>Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments</title><title>Ultrasonics sonochemistry</title><addtitle>Ultrason Sonochem</addtitle><description>•An analytical model is developed to predict the cavitation induced undercooling, grain nucleation and the solidified grain size.•Cavitation bubble implosion in metallic melts were imaged in-situ by ultrafast synchrotron X-ray imaging.•The model takes into account of ultrasound input intensity, cavitation bubble size and the effect of melt temperature.•The solidified grain size of different alloys were calculated using this model and compared with the experimental data. Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and grain size based on the ultrasound processing parameters.In this paper, an analytical model is developed to calculate the cavitation enhanced undercooling and the USMP refined solidification microstructure and grain size for Al-Cu alloys. Ultrafast synchrotron X-ray imaging and tomography techniques were used to collect the real-time experimental data for validating the model and the calculated results. The comparison between modeling and experiments reveal that there exists an effective ultrasound input power intensity for maximizing the grain refinement effects for the Al-Cu alloys, which is in the range of 20-45 MW/m2. In addition, a monotonous increase in temperature during USMP has negative effect on producing new nuclei, deteriorating the benefit of microstructure refinement due to the application of ultrasound.</description><subject>Modelling</subject><subject>Nucleation of metal alloys</subject><subject>Original</subject><subject>Ultrafast synchrotron X-ray imaging and tomography</subject><subject>Ultrasound Cavitation</subject><subject>Ultrasound melt processing</subject><issn>1350-4177</issn><issn>1873-2828</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFUsFu3CAQtapWTZr2FyIfe_EWAwbcQ9UoatJIkXppzgjDkLBiYQt41T3030vW2ag59cTozZs3w8xrmvMerXrUs0_r1exLjkE_rDDCfQUHQfCr5rQXnHRYYPG6xmRAHe05P2ne5bxGCJERo7fNCaECM47pafPnzpekcpyDabXauaKKi6F1wcwaTBtm7eEItRsoyrc5emecdfqAf24vQquC8vtSEd9uogFfAdPuVOUttdO-TaB8V9wGWvi9hVSDUPL75o1VPsOHp_esubv69vPye3f74_rm8uK20wPhpRuQHrgWPeWs571GwiLAeFCjoYZM2KJpIJYyzKyyk-BUKSsstszSgRlNLTlrbhZdE9Vabmt3lfYyKicPQEz3UqU6vwcJdZ0j4QQATZSOZDJcMUWZGAmh5qD1ZdHaztMGjK7_SMq_EH2ZCe5B3sedFIwQwnEV-PgkkOKvGXKRG5c1eK8CxDlLzBBFGIuxr1S2UHWKOSewz216JB99INfy6AP56AO5-KAWnv875HPZ8fCV8HUhQF37zkGSWTsI9eYugS51L-5_Pf4CRoXLTQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Huang, Haijun</creator><creator>Qin, Ling</creator><creator>Tang, Haibin</creator><creator>Shu, Da</creator><creator>Yan, Wentao</creator><creator>Sun, Baode</creator><creator>Mi, Jiawei</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211201</creationdate><title>Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments</title><author>Huang, Haijun ; Qin, Ling ; Tang, Haibin ; Shu, Da ; Yan, Wentao ; Sun, Baode ; Mi, Jiawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-50c57c81476171c08f0e225a9d4d3b2f0b53f4626fafb874aaf8f2f6f456dc4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Modelling</topic><topic>Nucleation of metal alloys</topic><topic>Original</topic><topic>Ultrafast synchrotron X-ray imaging and tomography</topic><topic>Ultrasound Cavitation</topic><topic>Ultrasound melt processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Haijun</creatorcontrib><creatorcontrib>Qin, Ling</creatorcontrib><creatorcontrib>Tang, Haibin</creatorcontrib><creatorcontrib>Shu, Da</creatorcontrib><creatorcontrib>Yan, Wentao</creatorcontrib><creatorcontrib>Sun, Baode</creatorcontrib><creatorcontrib>Mi, Jiawei</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Ultrasonics sonochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Haijun</au><au>Qin, Ling</au><au>Tang, Haibin</au><au>Shu, Da</au><au>Yan, Wentao</au><au>Sun, Baode</au><au>Mi, Jiawei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments</atitle><jtitle>Ultrasonics sonochemistry</jtitle><addtitle>Ultrason Sonochem</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>80</volume><spage>105832</spage><epage>105832</epage><pages>105832-105832</pages><artnum>105832</artnum><issn>1350-4177</issn><eissn>1873-2828</eissn><abstract>•An analytical model is developed to predict the cavitation induced undercooling, grain nucleation and the solidified grain size.•Cavitation bubble implosion in metallic melts were imaged in-situ by ultrafast synchrotron X-ray imaging.•The model takes into account of ultrasound input intensity, cavitation bubble size and the effect of melt temperature.•The solidified grain size of different alloys were calculated using this model and compared with the experimental data. Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and grain size based on the ultrasound processing parameters.In this paper, an analytical model is developed to calculate the cavitation enhanced undercooling and the USMP refined solidification microstructure and grain size for Al-Cu alloys. Ultrafast synchrotron X-ray imaging and tomography techniques were used to collect the real-time experimental data for validating the model and the calculated results. The comparison between modeling and experiments reveal that there exists an effective ultrasound input power intensity for maximizing the grain refinement effects for the Al-Cu alloys, which is in the range of 20-45 MW/m2. In addition, a monotonous increase in temperature during USMP has negative effect on producing new nuclei, deteriorating the benefit of microstructure refinement due to the application of ultrasound.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>34826724</pmid><doi>10.1016/j.ultsonch.2021.105832</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-4177
ispartof Ultrasonics sonochemistry, 2021-12, Vol.80, p.105832-105832, Article 105832
issn 1350-4177
1873-2828
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e2029373ee0b4493bd7a6a4689334d4f
source Open Access: PubMed Central; Elsevier
subjects Modelling
Nucleation of metal alloys
Original
Ultrafast synchrotron X-ray imaging and tomography
Ultrasound Cavitation
Ultrasound melt processing
title Ultrasound cavitation induced nucleation in metal solidification: An analytical model and validation by real-time experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasound%20cavitation%20induced%20nucleation%20in%20metal%20solidification:%20An%20analytical%20model%20and%20validation%20by%20real-time%20experiments&rft.jtitle=Ultrasonics%20sonochemistry&rft.au=Huang,%20Haijun&rft.date=2021-12-01&rft.volume=80&rft.spage=105832&rft.epage=105832&rft.pages=105832-105832&rft.artnum=105832&rft.issn=1350-4177&rft.eissn=1873-2828&rft_id=info:doi/10.1016/j.ultsonch.2021.105832&rft_dat=%3Cproquest_doaj_%3E2604022891%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c537t-50c57c81476171c08f0e225a9d4d3b2f0b53f4626fafb874aaf8f2f6f456dc4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2604022891&rft_id=info:pmid/34826724&rfr_iscdi=true