Loading…

Ginkgo biloba : Antioxidant Activity and In Silico Central Nervous System Potential

(GB) extracts have been used in clinical studies as an alternative therapy for Alzheimer's disease (AD), but the exact bioaction mechanism has not yet been elucidated. In this work, an in silico study on GB metabolites was carried out using SwissTargetPrediction to determine the proteins associ...

Full description

Saved in:
Bibliographic Details
Published in:Current issues in molecular biology 2023-12, Vol.45 (12), p.9674-9691
Main Authors: Suárez-González, Eduardo, Sandoval-Ramírez, Jesús, Flores-Hernández, Jorge, Carrasco-Carballo, Alan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:(GB) extracts have been used in clinical studies as an alternative therapy for Alzheimer's disease (AD), but the exact bioaction mechanism has not yet been elucidated. In this work, an in silico study on GB metabolites was carried out using SwissTargetPrediction to determine the proteins associated with AD. The resulting proteins, AChE, MAO-A, MAO-B, β-secretase and γ-secretase, were studied by molecular docking, resulting in the finding that kaempferol, quercetin, and luteolin have multitarget potential against AD. These compounds also exhibit antioxidant activity towards reactive oxygen species (ROS), so antioxidant tests were performed on the extracts using the DPPH and ABTS techniques. The ethanol and ethyl acetate GB extracts showed an important inhibition percentage, higher than 80%, at a dose of 0.01 mg/mL. The effect of GB extracts on AD resulted in multitarget action through two pathways: firstly, inhibiting enzymes responsible for degrading neurotransmitters and forming amyloid plaques; secondly, decreasing ROS in the central nervous system (CNS), reducing its deterioration, and promoting the formation of amyloid plaques. The results of this work demonstrate the great potential of GB as a medicinal plant.
ISSN:1467-3045
1467-3037
1467-3045
DOI:10.3390/cimb45120604