Loading…
Cardiovascular magnetic resonance in the diagnosis of acute heart transplant rejection: a review
Screening for organ rejection is a critical component of care for patients who have undergone heart transplantation. Endomyocardial biopsy is the gold standard screening tool, but non-invasive alternatives are needed. Cardiovascular magnetic resonance (CMR) is well suited to provide an alternative t...
Saved in:
Published in: | Journal of cardiovascular magnetic resonance 2009-03, Vol.11 (1), p.7-7, Article 7 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b582t-e7a950c40673b574573eadcdf852df4c4d4a9f206e9e22ed9962d146617772723 |
---|---|
cites | cdi_FETCH-LOGICAL-b582t-e7a950c40673b574573eadcdf852df4c4d4a9f206e9e22ed9962d146617772723 |
container_end_page | 7 |
container_issue | 1 |
container_start_page | 7 |
container_title | Journal of cardiovascular magnetic resonance |
container_volume | 11 |
creator | Butler, Craig R Thompson, Richard Haykowsky, Mark Toma, Mustafa Paterson, Ian |
description | Screening for organ rejection is a critical component of care for patients who have undergone heart transplantation. Endomyocardial biopsy is the gold standard screening tool, but non-invasive alternatives are needed. Cardiovascular magnetic resonance (CMR) is well suited to provide an alternative to biopsy because of its ability to quantify ventricular function, morphology, and characterize myocardial tissue. CMR is not widely used to screen for heart transplant rejection, despite many trials supporting its use for this indication. This review summarizes the different CMR sequences that can detect heart transplant rejection as well as the strengths and weaknesses of their application.
T2 quantification by spin echo techniques has been criticized for poor reproducibility, but multiple studies show its utility in screening for rejection. Human and animal data estimate that T2 quantification can diagnose rejection with sensitivities and specificities near 90%. There is also a suggestion that T2 quantification can predict rejection episodes in patients with normal endomyocardial biopsies.T1 quantification has also shown association with biopsy proven rejection in a small number of trials. T1 weighted gadolinium early enhancement appeared promising in animal data, but has had conflicting results in human trials. Late gadolinium enhancement in the diagnosis of rejection has not been evaluated.CMR derived measures of ventricular morphology and systolic function have insufficient sensitivity to diagnose mild to moderate rejection. CMR derived diastolic function can demonstrate abnormalities in allografts compared to native human hearts, but its ability to diagnose rejection has not yet been tested.There is promising animal data on the ability of iron oxide contrast agents to illustrate the changes in vascular permeability and macrophage accumulation seen in rejection. Despite good safety data, these contrast agents have not been tested in the human heart transplant population.
T2 quantification has demonstrated the best correlation to biopsy proven heart transplant rejection. Further studies evaluating diastolic function, late gadolinium enhancement, and iron oxide contrast agents to diagnose rejection are needed. Future studies should focus on combining multiple CMR measures into a transplant rejection scoring system which would improve sensitivity and possibly reduce, if not eliminate, the need for endomyocardial biopsy. |
doi_str_mv | 10.1186/1532-429X-11-7 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e2351100f64a4388813e38aa0d0abfad</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A196251287</galeid><doaj_id>oai_doaj_org_article_e2351100f64a4388813e38aa0d0abfad</doaj_id><sourcerecordid>A196251287</sourcerecordid><originalsourceid>FETCH-LOGICAL-b582t-e7a950c40673b574573eadcdf852df4c4d4a9f206e9e22ed9962d146617772723</originalsourceid><addsrcrecordid>eNp1kstv1DAQhyMEoqVw5Yhy4pbiV-yEA9JqxaNSJS4gcTMTe7LrVWIvdrIV_z1Od1W6QsgH2_P4NDO_KYrXlFxT2sh3tOasEqz9UVFaqSfF5YPhaX6TVlVSCnVRvEhpRwhtFVHPiwvaskZIyi6Ln2uI1oUDJDMPEMsRNh4nZ8qIKXjwBkvny2mLpXXZFZJLZehLMPOE5RYhTuUUwaf9AH7KSTs0kwv-fQn5c3B497J41sOQ8NXpviq-f_r4bf2luv36-Wa9uq26umFThQramhhBpOJdrUStOII1tm9qZnthhBXQ9oxIbJExtG0rmaVCSqqUYorxq-LmyLUBdnof3Qjxtw7g9L0hxI3OxTozoEbGa0oJ6aUAwZumoRx5A0Asga4Hm1kfjqz93I1oDfrc43AGPfd4t9WbcNBMSsLZUszqCOhc-A_g3GPCqBfl9KKcplSrzHh7KiKGXzOmSY8uGRzyoDHMSUtFZNvQJfD6GLiB3JzzfchIk4_F0ZngsXfZvqJ5YjVlzSPyfUIWcZi2KQzzIlw6DzyRTQwpRewfOqBEL-v3b81vHg_ub_hp3_gfDULWrw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67069817</pqid></control><display><type>article</type><title>Cardiovascular magnetic resonance in the diagnosis of acute heart transplant rejection: a review</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>ScienceDirect Journals</source><source>IngentaConnect Journals</source><creator>Butler, Craig R ; Thompson, Richard ; Haykowsky, Mark ; Toma, Mustafa ; Paterson, Ian</creator><creatorcontrib>Butler, Craig R ; Thompson, Richard ; Haykowsky, Mark ; Toma, Mustafa ; Paterson, Ian</creatorcontrib><description>Screening for organ rejection is a critical component of care for patients who have undergone heart transplantation. Endomyocardial biopsy is the gold standard screening tool, but non-invasive alternatives are needed. Cardiovascular magnetic resonance (CMR) is well suited to provide an alternative to biopsy because of its ability to quantify ventricular function, morphology, and characterize myocardial tissue. CMR is not widely used to screen for heart transplant rejection, despite many trials supporting its use for this indication. This review summarizes the different CMR sequences that can detect heart transplant rejection as well as the strengths and weaknesses of their application.
T2 quantification by spin echo techniques has been criticized for poor reproducibility, but multiple studies show its utility in screening for rejection. Human and animal data estimate that T2 quantification can diagnose rejection with sensitivities and specificities near 90%. There is also a suggestion that T2 quantification can predict rejection episodes in patients with normal endomyocardial biopsies.T1 quantification has also shown association with biopsy proven rejection in a small number of trials. T1 weighted gadolinium early enhancement appeared promising in animal data, but has had conflicting results in human trials. Late gadolinium enhancement in the diagnosis of rejection has not been evaluated.CMR derived measures of ventricular morphology and systolic function have insufficient sensitivity to diagnose mild to moderate rejection. CMR derived diastolic function can demonstrate abnormalities in allografts compared to native human hearts, but its ability to diagnose rejection has not yet been tested.There is promising animal data on the ability of iron oxide contrast agents to illustrate the changes in vascular permeability and macrophage accumulation seen in rejection. Despite good safety data, these contrast agents have not been tested in the human heart transplant population.
T2 quantification has demonstrated the best correlation to biopsy proven heart transplant rejection. Further studies evaluating diastolic function, late gadolinium enhancement, and iron oxide contrast agents to diagnose rejection are needed. Future studies should focus on combining multiple CMR measures into a transplant rejection scoring system which would improve sensitivity and possibly reduce, if not eliminate, the need for endomyocardial biopsy.</description><identifier>ISSN: 1097-6647</identifier><identifier>ISSN: 1532-429X</identifier><identifier>EISSN: 1532-429X</identifier><identifier>DOI: 10.1186/1532-429X-11-7</identifier><identifier>PMID: 19284612</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Acute Disease ; Contrast Media ; Diagnosis ; Graft rejection ; Graft Rejection - diagnosis ; Health aspects ; Heart ; Heart Transplantation ; Humans ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Review ; Risk factors ; Transplantation</subject><ispartof>Journal of cardiovascular magnetic resonance, 2009-03, Vol.11 (1), p.7-7, Article 7</ispartof><rights>COPYRIGHT 2009 BioMed Central Ltd.</rights><rights>Copyright © 2009 Butler et al; licensee BioMed Central Ltd. 2009 Butler et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b582t-e7a950c40673b574573eadcdf852df4c4d4a9f206e9e22ed9962d146617772723</citedby><cites>FETCH-LOGICAL-b582t-e7a950c40673b574573eadcdf852df4c4d4a9f206e9e22ed9962d146617772723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660322/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660322/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,36992,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19284612$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Butler, Craig R</creatorcontrib><creatorcontrib>Thompson, Richard</creatorcontrib><creatorcontrib>Haykowsky, Mark</creatorcontrib><creatorcontrib>Toma, Mustafa</creatorcontrib><creatorcontrib>Paterson, Ian</creatorcontrib><title>Cardiovascular magnetic resonance in the diagnosis of acute heart transplant rejection: a review</title><title>Journal of cardiovascular magnetic resonance</title><addtitle>J Cardiovasc Magn Reson</addtitle><description>Screening for organ rejection is a critical component of care for patients who have undergone heart transplantation. Endomyocardial biopsy is the gold standard screening tool, but non-invasive alternatives are needed. Cardiovascular magnetic resonance (CMR) is well suited to provide an alternative to biopsy because of its ability to quantify ventricular function, morphology, and characterize myocardial tissue. CMR is not widely used to screen for heart transplant rejection, despite many trials supporting its use for this indication. This review summarizes the different CMR sequences that can detect heart transplant rejection as well as the strengths and weaknesses of their application.
T2 quantification by spin echo techniques has been criticized for poor reproducibility, but multiple studies show its utility in screening for rejection. Human and animal data estimate that T2 quantification can diagnose rejection with sensitivities and specificities near 90%. There is also a suggestion that T2 quantification can predict rejection episodes in patients with normal endomyocardial biopsies.T1 quantification has also shown association with biopsy proven rejection in a small number of trials. T1 weighted gadolinium early enhancement appeared promising in animal data, but has had conflicting results in human trials. Late gadolinium enhancement in the diagnosis of rejection has not been evaluated.CMR derived measures of ventricular morphology and systolic function have insufficient sensitivity to diagnose mild to moderate rejection. CMR derived diastolic function can demonstrate abnormalities in allografts compared to native human hearts, but its ability to diagnose rejection has not yet been tested.There is promising animal data on the ability of iron oxide contrast agents to illustrate the changes in vascular permeability and macrophage accumulation seen in rejection. Despite good safety data, these contrast agents have not been tested in the human heart transplant population.
T2 quantification has demonstrated the best correlation to biopsy proven heart transplant rejection. Further studies evaluating diastolic function, late gadolinium enhancement, and iron oxide contrast agents to diagnose rejection are needed. Future studies should focus on combining multiple CMR measures into a transplant rejection scoring system which would improve sensitivity and possibly reduce, if not eliminate, the need for endomyocardial biopsy.</description><subject>Acute Disease</subject><subject>Contrast Media</subject><subject>Diagnosis</subject><subject>Graft rejection</subject><subject>Graft Rejection - diagnosis</subject><subject>Health aspects</subject><subject>Heart</subject><subject>Heart Transplantation</subject><subject>Humans</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Review</subject><subject>Risk factors</subject><subject>Transplantation</subject><issn>1097-6647</issn><issn>1532-429X</issn><issn>1532-429X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kstv1DAQhyMEoqVw5Yhy4pbiV-yEA9JqxaNSJS4gcTMTe7LrVWIvdrIV_z1Od1W6QsgH2_P4NDO_KYrXlFxT2sh3tOasEqz9UVFaqSfF5YPhaX6TVlVSCnVRvEhpRwhtFVHPiwvaskZIyi6Ln2uI1oUDJDMPEMsRNh4nZ8qIKXjwBkvny2mLpXXZFZJLZehLMPOE5RYhTuUUwaf9AH7KSTs0kwv-fQn5c3B497J41sOQ8NXpviq-f_r4bf2luv36-Wa9uq26umFThQramhhBpOJdrUStOII1tm9qZnthhBXQ9oxIbJExtG0rmaVCSqqUYorxq-LmyLUBdnof3Qjxtw7g9L0hxI3OxTozoEbGa0oJ6aUAwZumoRx5A0Asga4Hm1kfjqz93I1oDfrc43AGPfd4t9WbcNBMSsLZUszqCOhc-A_g3GPCqBfl9KKcplSrzHh7KiKGXzOmSY8uGRzyoDHMSUtFZNvQJfD6GLiB3JzzfchIk4_F0ZngsXfZvqJ5YjVlzSPyfUIWcZi2KQzzIlw6DzyRTQwpRewfOqBEL-v3b81vHg_ub_hp3_gfDULWrw</recordid><startdate>20090312</startdate><enddate>20090312</enddate><creator>Butler, Craig R</creator><creator>Thompson, Richard</creator><creator>Haykowsky, Mark</creator><creator>Toma, Mustafa</creator><creator>Paterson, Ian</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090312</creationdate><title>Cardiovascular magnetic resonance in the diagnosis of acute heart transplant rejection: a review</title><author>Butler, Craig R ; Thompson, Richard ; Haykowsky, Mark ; Toma, Mustafa ; Paterson, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b582t-e7a950c40673b574573eadcdf852df4c4d4a9f206e9e22ed9962d146617772723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acute Disease</topic><topic>Contrast Media</topic><topic>Diagnosis</topic><topic>Graft rejection</topic><topic>Graft Rejection - diagnosis</topic><topic>Health aspects</topic><topic>Heart</topic><topic>Heart Transplantation</topic><topic>Humans</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Review</topic><topic>Risk factors</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butler, Craig R</creatorcontrib><creatorcontrib>Thompson, Richard</creatorcontrib><creatorcontrib>Haykowsky, Mark</creatorcontrib><creatorcontrib>Toma, Mustafa</creatorcontrib><creatorcontrib>Paterson, Ian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of cardiovascular magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butler, Craig R</au><au>Thompson, Richard</au><au>Haykowsky, Mark</au><au>Toma, Mustafa</au><au>Paterson, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiovascular magnetic resonance in the diagnosis of acute heart transplant rejection: a review</atitle><jtitle>Journal of cardiovascular magnetic resonance</jtitle><addtitle>J Cardiovasc Magn Reson</addtitle><date>2009-03-12</date><risdate>2009</risdate><volume>11</volume><issue>1</issue><spage>7</spage><epage>7</epage><pages>7-7</pages><artnum>7</artnum><issn>1097-6647</issn><issn>1532-429X</issn><eissn>1532-429X</eissn><abstract>Screening for organ rejection is a critical component of care for patients who have undergone heart transplantation. Endomyocardial biopsy is the gold standard screening tool, but non-invasive alternatives are needed. Cardiovascular magnetic resonance (CMR) is well suited to provide an alternative to biopsy because of its ability to quantify ventricular function, morphology, and characterize myocardial tissue. CMR is not widely used to screen for heart transplant rejection, despite many trials supporting its use for this indication. This review summarizes the different CMR sequences that can detect heart transplant rejection as well as the strengths and weaknesses of their application.
T2 quantification by spin echo techniques has been criticized for poor reproducibility, but multiple studies show its utility in screening for rejection. Human and animal data estimate that T2 quantification can diagnose rejection with sensitivities and specificities near 90%. There is also a suggestion that T2 quantification can predict rejection episodes in patients with normal endomyocardial biopsies.T1 quantification has also shown association with biopsy proven rejection in a small number of trials. T1 weighted gadolinium early enhancement appeared promising in animal data, but has had conflicting results in human trials. Late gadolinium enhancement in the diagnosis of rejection has not been evaluated.CMR derived measures of ventricular morphology and systolic function have insufficient sensitivity to diagnose mild to moderate rejection. CMR derived diastolic function can demonstrate abnormalities in allografts compared to native human hearts, but its ability to diagnose rejection has not yet been tested.There is promising animal data on the ability of iron oxide contrast agents to illustrate the changes in vascular permeability and macrophage accumulation seen in rejection. Despite good safety data, these contrast agents have not been tested in the human heart transplant population.
T2 quantification has demonstrated the best correlation to biopsy proven heart transplant rejection. Further studies evaluating diastolic function, late gadolinium enhancement, and iron oxide contrast agents to diagnose rejection are needed. Future studies should focus on combining multiple CMR measures into a transplant rejection scoring system which would improve sensitivity and possibly reduce, if not eliminate, the need for endomyocardial biopsy.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>19284612</pmid><doi>10.1186/1532-429X-11-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6647 |
ispartof | Journal of cardiovascular magnetic resonance, 2009-03, Vol.11 (1), p.7-7, Article 7 |
issn | 1097-6647 1532-429X 1532-429X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e2351100f64a4388813e38aa0d0abfad |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3); ScienceDirect Journals; IngentaConnect Journals |
subjects | Acute Disease Contrast Media Diagnosis Graft rejection Graft Rejection - diagnosis Health aspects Heart Heart Transplantation Humans Magnetic resonance imaging Magnetic Resonance Imaging - methods Review Risk factors Transplantation |
title | Cardiovascular magnetic resonance in the diagnosis of acute heart transplant rejection: a review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiovascular%20magnetic%20resonance%20in%20the%20diagnosis%20of%20acute%20heart%20transplant%20rejection:%20a%20review&rft.jtitle=Journal%20of%20cardiovascular%20magnetic%20resonance&rft.au=Butler,%20Craig%20R&rft.date=2009-03-12&rft.volume=11&rft.issue=1&rft.spage=7&rft.epage=7&rft.pages=7-7&rft.artnum=7&rft.issn=1097-6647&rft.eissn=1532-429X&rft_id=info:doi/10.1186/1532-429X-11-7&rft_dat=%3Cgale_doaj_%3EA196251287%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b582t-e7a950c40673b574573eadcdf852df4c4d4a9f206e9e22ed9962d146617772723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67069817&rft_id=info:pmid/19284612&rft_galeid=A196251287&rfr_iscdi=true |