Loading…

Worldline numerics applied to custom Casimir geometry generates unanticipated intersection with Alcubierre warp metric

While conducting analysis related to a DARPA-funded project to evaluate possible structure of the energy density present in a Casimir cavity as predicted by the dynamic vacuum model, a micro/nano-scale structure has been discovered that predicts negative energy density distribution that closely matc...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. C, Particles and fields Particles and fields, 2021-07, Vol.81 (7), p.1-10, Article 677
Main Authors: White, Harold, Vera, Jerry, Han, Arum, Bruccoleri, Alexander R., MacArthur, Jonathan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c522t-32075c820992b8dd8c37258b2b6dd1bcf4793a3bdf0628f29c99ba77039005313
cites cdi_FETCH-LOGICAL-c522t-32075c820992b8dd8c37258b2b6dd1bcf4793a3bdf0628f29c99ba77039005313
container_end_page 10
container_issue 7
container_start_page 1
container_title The European physical journal. C, Particles and fields
container_volume 81
creator White, Harold
Vera, Jerry
Han, Arum
Bruccoleri, Alexander R.
MacArthur, Jonathan
description While conducting analysis related to a DARPA-funded project to evaluate possible structure of the energy density present in a Casimir cavity as predicted by the dynamic vacuum model, a micro/nano-scale structure has been discovered that predicts negative energy density distribution that closely matches requirements for the Alcubierre metric. The simplest notional geometry being analyzed as part of the DARPA-funded work consists of a standard parallel plate Casimir cavity equipped with pillars arrayed along the cavity mid-plane with the purpose of detecting a transient electric field arising from vacuum polarization conjectured to occur along the midplane of the cavity. An analytic technique called worldline numerics was adapted to numerically assess vacuum response to the custom Casimir cavity, and these numerical analysis results were observed to be qualitatively quite similar to a two-dimensional representation of energy density requirements for the Alcubierre warp metric. Subsequently, a toy model consisting of a 1  μ m diameter sphere centrally located in a 4 μ m diameter cylinder was analyzed to show a three-dimensional Casimir energy density that correlates well with the Alcubierre warp metric requirements. This qualitative correlation would suggest that chip-scale experiments might be explored to attempt to measure tiny signatures illustrative of the presence of the conjectured phenomenon: a real, albeit humble, warp bubble.
doi_str_mv 10.1140/epjc/s10052-021-09484-z
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e23c9e1b31794bfe87435414b25a5255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A670393431</galeid><doaj_id>oai_doaj_org_article_e23c9e1b31794bfe87435414b25a5255</doaj_id><sourcerecordid>A670393431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-32075c820992b8dd8c37258b2b6dd1bcf4793a3bdf0628f29c99ba77039005313</originalsourceid><addsrcrecordid>eNqFUktv1DAYjBBIlMJvwBInDmn9TOLjasVjpUpIPMTRsp0vwavEDrZDaX893g0q6gn54M_jmdHYmqp6TfAVIRxfw3K014lgLGiNKamx5B2v759UF4QzXjcFf_owc_68epHSEWNMOe4uql_fQ5z6yXlAfp0hOpuQXpbJQY9yQHZNOcxor5ObXUQjhBlyvCuDh6gzJLR67bOzbimnHjmfISaw2QWPbl3-gXaTXY2DGAHd6rigk97Zl9WzQU8JXv3dL6tv79993X-sbz59OOx3N7UVlOaaUdwK21EsJTVd33eWtVR0hpqm74mxA28l08z0A25oN1BppTS6bTGT5T8YYZfVYfPtgz6qJbpZxzsVtFNnIMRR6VjiT6CAMiuBGEZayc0AXcuZ4IQbKrSgQhSvN5vXEsPPFVJWx7BGX-Krct1ILATGhXW1sUZdTJ0fQo7altXD7GzwMLiC75pTRsbPEd8-EhROht951GtK6vDl82Nuu3FtDClFGB6eRLA6tUGd2qC2NqjSBnVug7ovym5TpqLwI8R_4f8n_QMu3LwQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556905500</pqid></control><display><type>article</type><title>Worldline numerics applied to custom Casimir geometry generates unanticipated intersection with Alcubierre warp metric</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>White, Harold ; Vera, Jerry ; Han, Arum ; Bruccoleri, Alexander R. ; MacArthur, Jonathan</creator><creatorcontrib>White, Harold ; Vera, Jerry ; Han, Arum ; Bruccoleri, Alexander R. ; MacArthur, Jonathan</creatorcontrib><description>While conducting analysis related to a DARPA-funded project to evaluate possible structure of the energy density present in a Casimir cavity as predicted by the dynamic vacuum model, a micro/nano-scale structure has been discovered that predicts negative energy density distribution that closely matches requirements for the Alcubierre metric. The simplest notional geometry being analyzed as part of the DARPA-funded work consists of a standard parallel plate Casimir cavity equipped with pillars arrayed along the cavity mid-plane with the purpose of detecting a transient electric field arising from vacuum polarization conjectured to occur along the midplane of the cavity. An analytic technique called worldline numerics was adapted to numerically assess vacuum response to the custom Casimir cavity, and these numerical analysis results were observed to be qualitatively quite similar to a two-dimensional representation of energy density requirements for the Alcubierre warp metric. Subsequently, a toy model consisting of a 1  μ m diameter sphere centrally located in a 4 μ m diameter cylinder was analyzed to show a three-dimensional Casimir energy density that correlates well with the Alcubierre warp metric requirements. This qualitative correlation would suggest that chip-scale experiments might be explored to attempt to measure tiny signatures illustrative of the presence of the conjectured phenomenon: a real, albeit humble, warp bubble.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-021-09484-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>3-D printers ; Analysis ; Astronomy ; Astrophysics and Cosmology ; Density distribution ; Diameters ; Electric fields ; Elementary Particles ; Energy ; Energy distribution ; Etching ; Flux density ; Geometry ; Hadrons ; Heavy Ions ; Mathematical models ; Measurement Science and Instrumentation ; Nuclear Energy ; Nuclear Physics ; Numerical analysis ; Parallel plates ; Physics ; Physics and Astronomy ; Qualitative analysis ; Quantum Field Theories ; Quantum Field Theory ; Regular Article - Theoretical Physics ; Silicon wafers ; String Theory ; Yang-Mills theory</subject><ispartof>The European physical journal. C, Particles and fields, 2021-07, Vol.81 (7), p.1-10, Article 677</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-32075c820992b8dd8c37258b2b6dd1bcf4793a3bdf0628f29c99ba77039005313</citedby><cites>FETCH-LOGICAL-c522t-32075c820992b8dd8c37258b2b6dd1bcf4793a3bdf0628f29c99ba77039005313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2556905500/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2556905500?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>White, Harold</creatorcontrib><creatorcontrib>Vera, Jerry</creatorcontrib><creatorcontrib>Han, Arum</creatorcontrib><creatorcontrib>Bruccoleri, Alexander R.</creatorcontrib><creatorcontrib>MacArthur, Jonathan</creatorcontrib><title>Worldline numerics applied to custom Casimir geometry generates unanticipated intersection with Alcubierre warp metric</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>While conducting analysis related to a DARPA-funded project to evaluate possible structure of the energy density present in a Casimir cavity as predicted by the dynamic vacuum model, a micro/nano-scale structure has been discovered that predicts negative energy density distribution that closely matches requirements for the Alcubierre metric. The simplest notional geometry being analyzed as part of the DARPA-funded work consists of a standard parallel plate Casimir cavity equipped with pillars arrayed along the cavity mid-plane with the purpose of detecting a transient electric field arising from vacuum polarization conjectured to occur along the midplane of the cavity. An analytic technique called worldline numerics was adapted to numerically assess vacuum response to the custom Casimir cavity, and these numerical analysis results were observed to be qualitatively quite similar to a two-dimensional representation of energy density requirements for the Alcubierre warp metric. Subsequently, a toy model consisting of a 1  μ m diameter sphere centrally located in a 4 μ m diameter cylinder was analyzed to show a three-dimensional Casimir energy density that correlates well with the Alcubierre warp metric requirements. This qualitative correlation would suggest that chip-scale experiments might be explored to attempt to measure tiny signatures illustrative of the presence of the conjectured phenomenon: a real, albeit humble, warp bubble.</description><subject>3-D printers</subject><subject>Analysis</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Density distribution</subject><subject>Diameters</subject><subject>Electric fields</subject><subject>Elementary Particles</subject><subject>Energy</subject><subject>Energy distribution</subject><subject>Etching</subject><subject>Flux density</subject><subject>Geometry</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Mathematical models</subject><subject>Measurement Science and Instrumentation</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Numerical analysis</subject><subject>Parallel plates</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Qualitative analysis</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Regular Article - Theoretical Physics</subject><subject>Silicon wafers</subject><subject>String Theory</subject><subject>Yang-Mills theory</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFUktv1DAYjBBIlMJvwBInDmn9TOLjasVjpUpIPMTRsp0vwavEDrZDaX893g0q6gn54M_jmdHYmqp6TfAVIRxfw3K014lgLGiNKamx5B2v759UF4QzXjcFf_owc_68epHSEWNMOe4uql_fQ5z6yXlAfp0hOpuQXpbJQY9yQHZNOcxor5ObXUQjhBlyvCuDh6gzJLR67bOzbimnHjmfISaw2QWPbl3-gXaTXY2DGAHd6rigk97Zl9WzQU8JXv3dL6tv79993X-sbz59OOx3N7UVlOaaUdwK21EsJTVd33eWtVR0hpqm74mxA28l08z0A25oN1BppTS6bTGT5T8YYZfVYfPtgz6qJbpZxzsVtFNnIMRR6VjiT6CAMiuBGEZayc0AXcuZ4IQbKrSgQhSvN5vXEsPPFVJWx7BGX-Krct1ILATGhXW1sUZdTJ0fQo7altXD7GzwMLiC75pTRsbPEd8-EhROht951GtK6vDl82Nuu3FtDClFGB6eRLA6tUGd2qC2NqjSBnVug7ovym5TpqLwI8R_4f8n_QMu3LwQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>White, Harold</creator><creator>Vera, Jerry</creator><creator>Han, Arum</creator><creator>Bruccoleri, Alexander R.</creator><creator>MacArthur, Jonathan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20210701</creationdate><title>Worldline numerics applied to custom Casimir geometry generates unanticipated intersection with Alcubierre warp metric</title><author>White, Harold ; Vera, Jerry ; Han, Arum ; Bruccoleri, Alexander R. ; MacArthur, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-32075c820992b8dd8c37258b2b6dd1bcf4793a3bdf0628f29c99ba77039005313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>Analysis</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Density distribution</topic><topic>Diameters</topic><topic>Electric fields</topic><topic>Elementary Particles</topic><topic>Energy</topic><topic>Energy distribution</topic><topic>Etching</topic><topic>Flux density</topic><topic>Geometry</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Mathematical models</topic><topic>Measurement Science and Instrumentation</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Numerical analysis</topic><topic>Parallel plates</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Qualitative analysis</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Regular Article - Theoretical Physics</topic><topic>Silicon wafers</topic><topic>String Theory</topic><topic>Yang-Mills theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Harold</creatorcontrib><creatorcontrib>Vera, Jerry</creatorcontrib><creatorcontrib>Han, Arum</creatorcontrib><creatorcontrib>Bruccoleri, Alexander R.</creatorcontrib><creatorcontrib>MacArthur, Jonathan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Harold</au><au>Vera, Jerry</au><au>Han, Arum</au><au>Bruccoleri, Alexander R.</au><au>MacArthur, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Worldline numerics applied to custom Casimir geometry generates unanticipated intersection with Alcubierre warp metric</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>81</volume><issue>7</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>677</artnum><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>While conducting analysis related to a DARPA-funded project to evaluate possible structure of the energy density present in a Casimir cavity as predicted by the dynamic vacuum model, a micro/nano-scale structure has been discovered that predicts negative energy density distribution that closely matches requirements for the Alcubierre metric. The simplest notional geometry being analyzed as part of the DARPA-funded work consists of a standard parallel plate Casimir cavity equipped with pillars arrayed along the cavity mid-plane with the purpose of detecting a transient electric field arising from vacuum polarization conjectured to occur along the midplane of the cavity. An analytic technique called worldline numerics was adapted to numerically assess vacuum response to the custom Casimir cavity, and these numerical analysis results were observed to be qualitatively quite similar to a two-dimensional representation of energy density requirements for the Alcubierre warp metric. Subsequently, a toy model consisting of a 1  μ m diameter sphere centrally located in a 4 μ m diameter cylinder was analyzed to show a three-dimensional Casimir energy density that correlates well with the Alcubierre warp metric requirements. This qualitative correlation would suggest that chip-scale experiments might be explored to attempt to measure tiny signatures illustrative of the presence of the conjectured phenomenon: a real, albeit humble, warp bubble.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjc/s10052-021-09484-z</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6044
ispartof The European physical journal. C, Particles and fields, 2021-07, Vol.81 (7), p.1-10, Article 677
issn 1434-6044
1434-6052
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e23c9e1b31794bfe87435414b25a5255
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects 3-D printers
Analysis
Astronomy
Astrophysics and Cosmology
Density distribution
Diameters
Electric fields
Elementary Particles
Energy
Energy distribution
Etching
Flux density
Geometry
Hadrons
Heavy Ions
Mathematical models
Measurement Science and Instrumentation
Nuclear Energy
Nuclear Physics
Numerical analysis
Parallel plates
Physics
Physics and Astronomy
Qualitative analysis
Quantum Field Theories
Quantum Field Theory
Regular Article - Theoretical Physics
Silicon wafers
String Theory
Yang-Mills theory
title Worldline numerics applied to custom Casimir geometry generates unanticipated intersection with Alcubierre warp metric
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Worldline%20numerics%20applied%20to%20custom%20Casimir%20geometry%20generates%20unanticipated%20intersection%20with%20Alcubierre%20warp%20metric&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=White,%20Harold&rft.date=2021-07-01&rft.volume=81&rft.issue=7&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=677&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-021-09484-z&rft_dat=%3Cgale_doaj_%3EA670393431%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-32075c820992b8dd8c37258b2b6dd1bcf4793a3bdf0628f29c99ba77039005313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2556905500&rft_id=info:pmid/&rft_galeid=A670393431&rfr_iscdi=true