Loading…
Worldline numerics applied to custom Casimir geometry generates unanticipated intersection with Alcubierre warp metric
While conducting analysis related to a DARPA-funded project to evaluate possible structure of the energy density present in a Casimir cavity as predicted by the dynamic vacuum model, a micro/nano-scale structure has been discovered that predicts negative energy density distribution that closely matc...
Saved in:
Published in: | The European physical journal. C, Particles and fields Particles and fields, 2021-07, Vol.81 (7), p.1-10, Article 677 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c522t-32075c820992b8dd8c37258b2b6dd1bcf4793a3bdf0628f29c99ba77039005313 |
---|---|
cites | cdi_FETCH-LOGICAL-c522t-32075c820992b8dd8c37258b2b6dd1bcf4793a3bdf0628f29c99ba77039005313 |
container_end_page | 10 |
container_issue | 7 |
container_start_page | 1 |
container_title | The European physical journal. C, Particles and fields |
container_volume | 81 |
creator | White, Harold Vera, Jerry Han, Arum Bruccoleri, Alexander R. MacArthur, Jonathan |
description | While conducting analysis related to a DARPA-funded project to evaluate possible structure of the energy density present in a Casimir cavity as predicted by the dynamic vacuum model, a micro/nano-scale structure has been discovered that predicts negative energy density distribution that closely matches requirements for the Alcubierre metric. The simplest notional geometry being analyzed as part of the DARPA-funded work consists of a standard parallel plate Casimir cavity equipped with pillars arrayed along the cavity mid-plane with the purpose of detecting a transient electric field arising from vacuum polarization conjectured to occur along the midplane of the cavity. An analytic technique called worldline numerics was adapted to numerically assess vacuum response to the custom Casimir cavity, and these numerical analysis results were observed to be qualitatively quite similar to a two-dimensional representation of energy density requirements for the Alcubierre warp metric. Subsequently, a toy model consisting of a 1
μ
m diameter sphere centrally located in a 4
μ
m diameter cylinder was analyzed to show a three-dimensional Casimir energy density that correlates well with the Alcubierre warp metric requirements. This qualitative correlation would suggest that chip-scale experiments might be explored to attempt to measure tiny signatures illustrative of the presence of the conjectured phenomenon: a real, albeit humble, warp bubble. |
doi_str_mv | 10.1140/epjc/s10052-021-09484-z |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e23c9e1b31794bfe87435414b25a5255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A670393431</galeid><doaj_id>oai_doaj_org_article_e23c9e1b31794bfe87435414b25a5255</doaj_id><sourcerecordid>A670393431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-32075c820992b8dd8c37258b2b6dd1bcf4793a3bdf0628f29c99ba77039005313</originalsourceid><addsrcrecordid>eNqFUktv1DAYjBBIlMJvwBInDmn9TOLjasVjpUpIPMTRsp0vwavEDrZDaX893g0q6gn54M_jmdHYmqp6TfAVIRxfw3K014lgLGiNKamx5B2v759UF4QzXjcFf_owc_68epHSEWNMOe4uql_fQ5z6yXlAfp0hOpuQXpbJQY9yQHZNOcxor5ObXUQjhBlyvCuDh6gzJLR67bOzbimnHjmfISaw2QWPbl3-gXaTXY2DGAHd6rigk97Zl9WzQU8JXv3dL6tv79993X-sbz59OOx3N7UVlOaaUdwK21EsJTVd33eWtVR0hpqm74mxA28l08z0A25oN1BppTS6bTGT5T8YYZfVYfPtgz6qJbpZxzsVtFNnIMRR6VjiT6CAMiuBGEZayc0AXcuZ4IQbKrSgQhSvN5vXEsPPFVJWx7BGX-Krct1ILATGhXW1sUZdTJ0fQo7altXD7GzwMLiC75pTRsbPEd8-EhROht951GtK6vDl82Nuu3FtDClFGB6eRLA6tUGd2qC2NqjSBnVug7ovym5TpqLwI8R_4f8n_QMu3LwQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556905500</pqid></control><display><type>article</type><title>Worldline numerics applied to custom Casimir geometry generates unanticipated intersection with Alcubierre warp metric</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>White, Harold ; Vera, Jerry ; Han, Arum ; Bruccoleri, Alexander R. ; MacArthur, Jonathan</creator><creatorcontrib>White, Harold ; Vera, Jerry ; Han, Arum ; Bruccoleri, Alexander R. ; MacArthur, Jonathan</creatorcontrib><description>While conducting analysis related to a DARPA-funded project to evaluate possible structure of the energy density present in a Casimir cavity as predicted by the dynamic vacuum model, a micro/nano-scale structure has been discovered that predicts negative energy density distribution that closely matches requirements for the Alcubierre metric. The simplest notional geometry being analyzed as part of the DARPA-funded work consists of a standard parallel plate Casimir cavity equipped with pillars arrayed along the cavity mid-plane with the purpose of detecting a transient electric field arising from vacuum polarization conjectured to occur along the midplane of the cavity. An analytic technique called worldline numerics was adapted to numerically assess vacuum response to the custom Casimir cavity, and these numerical analysis results were observed to be qualitatively quite similar to a two-dimensional representation of energy density requirements for the Alcubierre warp metric. Subsequently, a toy model consisting of a 1
μ
m diameter sphere centrally located in a 4
μ
m diameter cylinder was analyzed to show a three-dimensional Casimir energy density that correlates well with the Alcubierre warp metric requirements. This qualitative correlation would suggest that chip-scale experiments might be explored to attempt to measure tiny signatures illustrative of the presence of the conjectured phenomenon: a real, albeit humble, warp bubble.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-021-09484-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>3-D printers ; Analysis ; Astronomy ; Astrophysics and Cosmology ; Density distribution ; Diameters ; Electric fields ; Elementary Particles ; Energy ; Energy distribution ; Etching ; Flux density ; Geometry ; Hadrons ; Heavy Ions ; Mathematical models ; Measurement Science and Instrumentation ; Nuclear Energy ; Nuclear Physics ; Numerical analysis ; Parallel plates ; Physics ; Physics and Astronomy ; Qualitative analysis ; Quantum Field Theories ; Quantum Field Theory ; Regular Article - Theoretical Physics ; Silicon wafers ; String Theory ; Yang-Mills theory</subject><ispartof>The European physical journal. C, Particles and fields, 2021-07, Vol.81 (7), p.1-10, Article 677</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-32075c820992b8dd8c37258b2b6dd1bcf4793a3bdf0628f29c99ba77039005313</citedby><cites>FETCH-LOGICAL-c522t-32075c820992b8dd8c37258b2b6dd1bcf4793a3bdf0628f29c99ba77039005313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2556905500/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2556905500?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>White, Harold</creatorcontrib><creatorcontrib>Vera, Jerry</creatorcontrib><creatorcontrib>Han, Arum</creatorcontrib><creatorcontrib>Bruccoleri, Alexander R.</creatorcontrib><creatorcontrib>MacArthur, Jonathan</creatorcontrib><title>Worldline numerics applied to custom Casimir geometry generates unanticipated intersection with Alcubierre warp metric</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>While conducting analysis related to a DARPA-funded project to evaluate possible structure of the energy density present in a Casimir cavity as predicted by the dynamic vacuum model, a micro/nano-scale structure has been discovered that predicts negative energy density distribution that closely matches requirements for the Alcubierre metric. The simplest notional geometry being analyzed as part of the DARPA-funded work consists of a standard parallel plate Casimir cavity equipped with pillars arrayed along the cavity mid-plane with the purpose of detecting a transient electric field arising from vacuum polarization conjectured to occur along the midplane of the cavity. An analytic technique called worldline numerics was adapted to numerically assess vacuum response to the custom Casimir cavity, and these numerical analysis results were observed to be qualitatively quite similar to a two-dimensional representation of energy density requirements for the Alcubierre warp metric. Subsequently, a toy model consisting of a 1
μ
m diameter sphere centrally located in a 4
μ
m diameter cylinder was analyzed to show a three-dimensional Casimir energy density that correlates well with the Alcubierre warp metric requirements. This qualitative correlation would suggest that chip-scale experiments might be explored to attempt to measure tiny signatures illustrative of the presence of the conjectured phenomenon: a real, albeit humble, warp bubble.</description><subject>3-D printers</subject><subject>Analysis</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Density distribution</subject><subject>Diameters</subject><subject>Electric fields</subject><subject>Elementary Particles</subject><subject>Energy</subject><subject>Energy distribution</subject><subject>Etching</subject><subject>Flux density</subject><subject>Geometry</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Mathematical models</subject><subject>Measurement Science and Instrumentation</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Numerical analysis</subject><subject>Parallel plates</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Qualitative analysis</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Regular Article - Theoretical Physics</subject><subject>Silicon wafers</subject><subject>String Theory</subject><subject>Yang-Mills theory</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFUktv1DAYjBBIlMJvwBInDmn9TOLjasVjpUpIPMTRsp0vwavEDrZDaX893g0q6gn54M_jmdHYmqp6TfAVIRxfw3K014lgLGiNKamx5B2v759UF4QzXjcFf_owc_68epHSEWNMOe4uql_fQ5z6yXlAfp0hOpuQXpbJQY9yQHZNOcxor5ObXUQjhBlyvCuDh6gzJLR67bOzbimnHjmfISaw2QWPbl3-gXaTXY2DGAHd6rigk97Zl9WzQU8JXv3dL6tv79993X-sbz59OOx3N7UVlOaaUdwK21EsJTVd33eWtVR0hpqm74mxA28l08z0A25oN1BppTS6bTGT5T8YYZfVYfPtgz6qJbpZxzsVtFNnIMRR6VjiT6CAMiuBGEZayc0AXcuZ4IQbKrSgQhSvN5vXEsPPFVJWx7BGX-Krct1ILATGhXW1sUZdTJ0fQo7altXD7GzwMLiC75pTRsbPEd8-EhROht951GtK6vDl82Nuu3FtDClFGB6eRLA6tUGd2qC2NqjSBnVug7ovym5TpqLwI8R_4f8n_QMu3LwQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>White, Harold</creator><creator>Vera, Jerry</creator><creator>Han, Arum</creator><creator>Bruccoleri, Alexander R.</creator><creator>MacArthur, Jonathan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20210701</creationdate><title>Worldline numerics applied to custom Casimir geometry generates unanticipated intersection with Alcubierre warp metric</title><author>White, Harold ; Vera, Jerry ; Han, Arum ; Bruccoleri, Alexander R. ; MacArthur, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-32075c820992b8dd8c37258b2b6dd1bcf4793a3bdf0628f29c99ba77039005313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>Analysis</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Density distribution</topic><topic>Diameters</topic><topic>Electric fields</topic><topic>Elementary Particles</topic><topic>Energy</topic><topic>Energy distribution</topic><topic>Etching</topic><topic>Flux density</topic><topic>Geometry</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Mathematical models</topic><topic>Measurement Science and Instrumentation</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Numerical analysis</topic><topic>Parallel plates</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Qualitative analysis</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Regular Article - Theoretical Physics</topic><topic>Silicon wafers</topic><topic>String Theory</topic><topic>Yang-Mills theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Harold</creatorcontrib><creatorcontrib>Vera, Jerry</creatorcontrib><creatorcontrib>Han, Arum</creatorcontrib><creatorcontrib>Bruccoleri, Alexander R.</creatorcontrib><creatorcontrib>MacArthur, Jonathan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Harold</au><au>Vera, Jerry</au><au>Han, Arum</au><au>Bruccoleri, Alexander R.</au><au>MacArthur, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Worldline numerics applied to custom Casimir geometry generates unanticipated intersection with Alcubierre warp metric</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>81</volume><issue>7</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>677</artnum><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>While conducting analysis related to a DARPA-funded project to evaluate possible structure of the energy density present in a Casimir cavity as predicted by the dynamic vacuum model, a micro/nano-scale structure has been discovered that predicts negative energy density distribution that closely matches requirements for the Alcubierre metric. The simplest notional geometry being analyzed as part of the DARPA-funded work consists of a standard parallel plate Casimir cavity equipped with pillars arrayed along the cavity mid-plane with the purpose of detecting a transient electric field arising from vacuum polarization conjectured to occur along the midplane of the cavity. An analytic technique called worldline numerics was adapted to numerically assess vacuum response to the custom Casimir cavity, and these numerical analysis results were observed to be qualitatively quite similar to a two-dimensional representation of energy density requirements for the Alcubierre warp metric. Subsequently, a toy model consisting of a 1
μ
m diameter sphere centrally located in a 4
μ
m diameter cylinder was analyzed to show a three-dimensional Casimir energy density that correlates well with the Alcubierre warp metric requirements. This qualitative correlation would suggest that chip-scale experiments might be explored to attempt to measure tiny signatures illustrative of the presence of the conjectured phenomenon: a real, albeit humble, warp bubble.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjc/s10052-021-09484-z</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6044 |
ispartof | The European physical journal. C, Particles and fields, 2021-07, Vol.81 (7), p.1-10, Article 677 |
issn | 1434-6044 1434-6052 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e23c9e1b31794bfe87435414b25a5255 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | 3-D printers Analysis Astronomy Astrophysics and Cosmology Density distribution Diameters Electric fields Elementary Particles Energy Energy distribution Etching Flux density Geometry Hadrons Heavy Ions Mathematical models Measurement Science and Instrumentation Nuclear Energy Nuclear Physics Numerical analysis Parallel plates Physics Physics and Astronomy Qualitative analysis Quantum Field Theories Quantum Field Theory Regular Article - Theoretical Physics Silicon wafers String Theory Yang-Mills theory |
title | Worldline numerics applied to custom Casimir geometry generates unanticipated intersection with Alcubierre warp metric |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Worldline%20numerics%20applied%20to%20custom%20Casimir%20geometry%20generates%20unanticipated%20intersection%20with%20Alcubierre%20warp%20metric&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=White,%20Harold&rft.date=2021-07-01&rft.volume=81&rft.issue=7&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=677&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-021-09484-z&rft_dat=%3Cgale_doaj_%3EA670393431%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-32075c820992b8dd8c37258b2b6dd1bcf4793a3bdf0628f29c99ba77039005313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2556905500&rft_id=info:pmid/&rft_galeid=A670393431&rfr_iscdi=true |