Loading…

Dynamics and clinical relevance of maternal mRNA clearance during the oocyte-to-embryo transition in humans

Maternal mRNA clearance is an essential process that occurs during maternal-to-zygotic transition (MZT). However, the dynamics, functional importance, and pathological relevance of maternal mRNA decay in human preimplantation embryos have not yet been analyzed. Here we report the zygotic genome acti...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-10, Vol.11 (1), p.4917-4917, Article 4917
Main Authors: Sha, Qian-Qian, Zheng, Wei, Wu, Yun-Wen, Li, Sen, Guo, Lei, Zhang, Shuoping, Lin, Ge, Ou, Xiang-Hong, Fan, Heng-Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Maternal mRNA clearance is an essential process that occurs during maternal-to-zygotic transition (MZT). However, the dynamics, functional importance, and pathological relevance of maternal mRNA decay in human preimplantation embryos have not yet been analyzed. Here we report the zygotic genome activation (ZGA)-dependent and -independent maternal mRNA clearance processes during human MZT and demonstrate that subgroups of human maternal transcripts are sequentially removed by maternal (M)- and zygotic (Z)-decay pathways before and after ZGA. Key factors regulating M-decay and Z-decay pathways in mouse have similar expression pattern during human MZT, suggesting that YAP1-TEAD4 transcription activators, TUT4/7-mediated mRNA 3ʹ-oligouridylation, and BTG4/CCR4-NOT-induced mRNA deadenylation may also be involved in the regulation of human maternal mRNA stability. Decreased expression of these factors and abnormal accumulation of maternal transcripts are observed in the development-arrested embryos of patients who seek assisted reproduction. Defects of M-decay and Z-decay are detected with high incidence in embryos that are arrested at the zygote and 8-cell stages, respectively. In addition, M-decay is not found to be affected by maternal TUBB8 mutations, although these mutations cause meiotic cell division defects and zygotic arrest, which indicates that mRNA decay is regulated independent of meiotic spindle assembly. Considering the correlations between maternal mRNA decay defects and early developmental arrest of in vitro fertilized human embryos, M-decay and Z-decay pathway activities may contribute to the developmental potential of human preimplantation embryos. How maternal RNA clearance is regulated in human preimplantation embryos is unclear. Here, the authors show there is a potential correlation between maternal mRNA decay defects and early developmental arrest from in vitro fertilized human embryos, suggesting that M-decay and Z-decay pathways may regulate such early development.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-18680-6